653
Views
5
CrossRef citations to date
0
Altmetric
Research Article

The Relationship Between Wort Sugar Concentration and Yeast Carbon Partitioning During Brewing Fermentations

, & ORCID Icon
Pages 225-234 | Received 13 Nov 2018, Accepted 05 Aug 2019, Published online: 07 Oct 2019

Literature cited

  • Stewart, G. G. High-Gravity Brewing and Distilling - Past Experiences and Future Prospects. J. Am. Soc. Brew. Chem. 2010, 68, 1–9. DOI: 10.1094/ASBCJ--1214-01.
  • Stewart, G. G. Adjuncts. In: Brewing Materials and Processes: A Practical Approach to Beer Excellence. Bamforth, C. W. Ed.; Elsevier: Oxford, 2016.
  • Puligundla, P.; Smogrovicova, D.; Obulam, V. S. R.; Ko, S. Very High Gravity (VHG) Ethanolic Brewing and Fermentation: A Research Update. J. Ind. Microbiol. Biotechnol. 2011, 38, 1133–1144. DOI: 10.1007/s10295-011--3.
  • Stewart, G. G. Forty Years of Brewing Research. J. Inst. Brew. 2009, 115, 3–29. DOI: 10.1002/j.2050-0416.2009.tb00340.x.
  • Gibson, B. R. 125th Anniversary Review: Improvement of Higher Gravity Brewery Fermentation via Wort Enrichment and Supplementation. J. Inst. Brew. 2011, 117, 268–284. DOI: 10.1002/j.2050-0416.2011.tb00472.x.
  • Vidgren, V.; Huuskonen, A.; Virtanen, H.; Ruohonen, L.; Londesborough, J. Improved Fermentation Performance of a Lager Yeast after Repair of Its AGT1 Maltose and Maltotriose Transporter Genes. Appl. Environ. Microbiol. 2009, 75, 2333–2345. DOI: 10.1128/AEM.01558-08.
  • Brey, S. High Gravity Brewing – Its Effect on Hydrophobic Polypeptide Losses and Proteinase a Secretion by Saccharomyces cerevisiae during Wort Fermentation. Thesis, Heriot-Watt University, 2004.
  • Cooper, D. J. Studies on High Gravity Brewing and Its Negative Effect on Beer Foam Stability. Thesis, Heriot-Watt University, 1998.
  • Boulton, C. A.; Quain, D. E. Brewing Yeast and Fermentation; Blackwell Science: Oxford, 2001.
  • Dekoninck, T. M. L.; Verbelen, P. J.; Delvaux, F.; Van Mulders, S. E.; Delvaux, F. R. The Importance of Wort Composition for Yeast Metabolism during Accelerated Brewery Fermentations. J. Am. Soc. Brew. Chem. 2012, 70, 195–204. DOI: 10.1094/ASBCJ-2012-0809-01.
  • Lavoisier, A. Elements of Chemistry; Dover Publishers: New York, 1790.
  • De Clerck, J. A Textbook of Brewing; Chapman and Hall: London, 1958.
  • Nielsen, H. Balling’s Formula, When Used at Faxe Brewery. Scand. Brew. Rev. 2004, 61, 39–41.
  • Cutaia, A. J. Estimation of Yeast Mass Increase in Production Brewing Fermentations by Calculation of Carbohydrate Utilization. J. Am. Soc. Brew. Chem. 2007, 65, 166–171. DOI: 10.1094/ASBCJ--0405-01.
  • Powell, C. D.; Quain, D. E.; Smart, K. A. The Impact of Brewing Yeast Cell Age on Fermentation Performance, Attenuation and Flocculation. FEMS Yeast Res. 2003, 3, 149–157. DOI: 10.1016/S1567-1356(03)00002-3.
  • Quain, D. E.; Box, W. G.; Walton, F. An Inexpensive and Simple Small Scale Laboratory Fermenter. Lab. Pract. 1985, 34, 84–85.
  • Pierce, J. S. Institute of Brewing Analysis Committee: Measurement of Yeast Viability. J. Inst. Brew. 1970, 76, 442–443. DOI: 10.1002/j.2050-0416.1970.tb03325.x.
  • Gibson, B. R.; Boulton, C. A.; Box, W. G.; Graham, N. S.; Lawrence, S. J.; Linforth, R. S. T.; Smart, K. A. Carbohydrate Utilization and the Lager Yeast Transcriptome during Brewery Fermentation. Yeast 2008, 25, 549–562. DOI: 10.1002/yea.1609.
  • Ashraf, N.; Linforth, R. S. T.; Bealin-Kelly, F.; Smart, K.; Taylor, A. J. Rapid Analysis of Selected Beer Volatiles by Atmospheric Pressure Chemical Ionisation-Mass Spectrometry. Int. J. Mass. Spectrom. 2010, 294, 47–53. DOI: 10.1016/j.ijms.2010.05.007.
  • Parrou, J. L.; Francois, J. A Simplified Procedure for a Rapid and Reliable Assay of Both Glycogen and Trehalose in Whole Yeast Cells. Anal. Biochem. 1997, 248, 186–188. DOI: 10.1006/abio.1997.2138.
  • Van Hoek, P.; Van Dijken, J. P.; Pronk, J. T. Effect of Specific Growth Rate on Fermentative Capacity of Baker's Yeast. Appl. Environ. Microbiol. 1998, 64, 4226–4233.
  • Rui, B.; Shen, T.; Zhou, H.; Liu, J. P.; Chen, J. S.; Pan, X. S.; Liu, H. Y.; Wu, J. H.; Zheng, H. R.; Shi, Y. Y. A Systematic Investigation of Escherichia coli Central Carbon Metabolism in Response to Superoxide Stress. BMC Syst. Biol. 2010, 4, 122. DOI: 10.1186/1752-0509-4-122.
  • Van Gulik, W. M.; De Laat, W.; Vinke, J. L.; Heijnen, J. J. Application of Metabolic Flux Analysis for the Identification of Metabolic Bottlenecks in the Biosynthesis of penicillin-G. Biotechnol. Bioeng. 2000, 68, 602–618.
  • Cadiere, A.; Ortiz-Julien, A.; Camarasa, C.; Dequin, S. Evolutionary Engineered Saccharomyces cerevisiae Wine Yeast Strains with Increased in Vivo Flux through the Pentose Phosphate Pathway. Metab. Eng. 2011, 13, 263–271. DOI: 10.1016/j.ymben.2011.01.008.
  • Nevoigt, E.; Pilger, R.; Mast-Gerlach, E.; Schmidt, U.; Freihammer, S.; Eschenbrenner, M.; Garbe, L.; Stahl, U. Genetic Engineering of Brewing Yeast to Reduce the Content of Ethanol in Beer. FEMS Yeast Res. 2002, 2, 225–232. DOI: 10.1111/j.1567-1364.2002.tb00087.x.
  • Underwood, S. A.; Zhou, S.; Causey, T. B.; Yomano, L. P.; Shanmugam, K. T.; Ingram, L. O. Genetic Changes to Optimize Carbon Partitioning between Ethanol and Biosynthesis in Ethanologenic Escherichia coli. Appl. Environ. Microbiol. 2002, 68, 6263–6272. DOI: 10.1128/aem.68.12.6263-6272.2002.
  • Grose, J. H.; Smith, T. L.; Sabic, H.; Rutter, J. Yeast PAS Kinase Coordinates Glucose Partitioning in Response to Metabolic and Cell Integrity Signaling. Embo J. 2007, 26, 4824–4830. DOI: 10.1038/sj.emboj.7601914.
  • Sauer, U.; Eikmanns, B. J. The PEP-Pyruvate-Oxaloacetate Node as the Switch Point for Carbon Flux Distribution in Bacteria. FEMS Microbiol. Rev. 2005, 29, 765–794. DOI: 10.1016/j.femsre.2004.11.002.
  • Wang, Z. X.; Zhuge, J.; Fang, H. Y.; Prior, B. A. Glycerol Production by Microbial Fermentation: A Review. Biotechnol. Adv. 2001, 19, 201–223. DOI: 10.1016/S-9750(01)00060-X.
  • Jules, M.; Guillou, V.; Francois, J.; Parrou, J. L. Two Distinct Pathways for Trehalose Assimilation in the Yeast Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2004, 70, 2771–2778. DOI: 10.1128/AEM.70.5.2771-2778.2004.
  • Mansure, J. J. C.; Panek, A. D.; Crowe, L. M.; Crowe, J. H. Trehalose Inhibits Ethanol Effects on Intact Yeast Cells and Liposomes. Biochim. Biophys. Acta-Biomembr. 1994, 1191, 309–316. DOI: 10.1016/0005-(94)90181-3.
  • Neves, M. J.; Jorge, J. A.; Francois, J. M.; Terenzi, H. F. Effects of Heat Shock on the Level of Trehalose and Glycogen, and on the Induction of Thermotolerance in Neurospora crassa. FEBS Lett. 1991, 283, 19–22. DOI: 10.1016/0014-(91)80544-D.
  • Petit, T.; Francois, J. Accumulation of Trehalose in Saccharomyces cerevisiae Growing on Maltose Is Dependent on the TPS1 Gene Encoding the UDP Glucose-Linked Trehalose Synthase. FEBS Lett. 1994, 355, 309–313. DOI: 10.1016/0014-(94)01215-6.
  • Plourde-Owobi, L.; Durner, S.; Goma, G.; Francois, J. Trehalose Reserve in Saccharomyces cerevisiae: Phenomenon of Transport, Accumulation and Role in Cell Viability. Int. J. Food Microbiol. 2000, 55, 33–40. DOI: 10.1016/s0168-1605(00)00210-5.
  • Rosenfeld, E.; Beauvoit, B.; Blondin, B.; Salmon, J. M. Oxygen Consumption by Anaerobic Saccharomyces cerevisiae under Enological Conditions: effect on Fermentation kinetics. Appl. Environ. Microbiol. 2003, 69, 113–121. DOI: 10.1128/aem.69.1.113-121.2003.
  • Gaber, R. F.; Copple, D. M.; Kennedy, B. K.; Vidal, M.; Bard, M. The yeast gene ERG6 is required for normal membrane function but is not essential for biosynthesis of the cell-cycle-sparking sterol. Mol. Cell Biol. 1989, 9:3447–3456.
  • Rodriguez, R. J.; Parks, L. W. Structural and Physiological Features of Sterols Necessary to Satisfy Bulk Membrane and Sparking Requirements in Yeast Sterol Auxotrophs. Arch. Biochem. Biophys. 1983, 225, 861–871. DOI: 10.1016/0003-9861(83)90099-1.
  • Jakobsen, M.; Thorne, R. S. W. Oxygen Requirements of Brewing Strains of Saccharomyces uvarum (carlsbergensis)-Bottom Fermentation Yeast. J. Inst. Brew. 1980, 86, 284–287. DOI: 10.1002/j.2050-0416.1980.tb06882.x.
  • Quiros, M.; Martinez-Moreno, R.; Albiol, J.; Morales, P.; Vazquez-Lima, F.; Barreiro-Vazquez, A.; Ferrer, P.; Gonzalez, R. Metabolic Flux Analysis during the Exponential Growth Phase of Saccharomyces cerevisiae in Wine Fermentations. PLoS One. 2013, 8, e71909DOI: 10.1371/journal.pone.0071909.
  • Soons, Z.; Ferreira, E. C.; Patil, K. R.; Rocha, I. Identification of Metabolic Engineering Targets through Analysis of Optimal and Sub-Optimal Routes. PLoS One. 2013, 8, e61648DOI: 10.1371/journal.pone.0061648.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.