330
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Characterization of Unmalted Barley Treated with Aspergillus oryzae

ORCID Icon, & ORCID Icon
Pages 427-434 | Received 10 Feb 2021, Accepted 05 Sep 2021, Published online: 13 Oct 2021

Literature cited

  • Machida, M.; Yamada, O.; Gomi, K. Genomics of Aspergillus oryzae: Learning from the History of Koji Mold and Exploration of Its Future. DNA Res. 2008, 15, 173–183. DOI: 10.1093/dnares/dsn020.
  • Kitamoto, K. Cell Biology of the Koji Mold Aspergillus oryzae. Biosci. Biotechnol. Biochem. 2015, 79, 863–869. DOI: 10.1080/09168451.2015.1023249.
  • Steinberg, G. Hyphal Growth: A Tale of Motors, Lipids, and the Spitzenkörper. Eukaryot. Cell. 2007, 6, 351–360. DOI: 10.1128/EC.00381-06.
  • Virag, A.; Harris, S. D. The Spitzenkörper: A Molecular Perspective. Mycol. Res. 2006, 110, 4–13. DOI: 10.1016/j.mycres.2005.09.005.
  • Bechman, A.; Phillips, R. D.; Chen, J. Changes in Selected Physical Property and Enzyme Activity of Rice and Barley Koji during Fermentation and Storage. J Food Sci. 2012, 77, M318–M322. doi: 10.1111/j.1750-3841.2012.02691.x
  • Montanuci, F. D.; Ribani, M.; de Matos Jorge, L. M.; Matos Jorge, R. M. Effect of Steeping Time and Temperature on Malting Process. J. Food Process Eng. 2017, 40, e12519. DOI: 10.1111/jfpe.12519.
  • Müller, C.; Methner, F.-J. An Accelerated Malting Procedure—Influences on Malt Quality and Cost Savings by Reduced Energy Consumption and Malting Losses. J. Inst. Brew. 2015, 121, 181–192. DOI: 10.1002/jib.225.
  • Eureka Swan. Reduction of Water Use in the EU Malting Industry (p. 11). Project SWAN: Save Water and Attend Nature. 2020. https://www.ukmalt.com/wp-content/uploads/2020/08/SWAN-FINAL-REPORT.pdf.
  • Guiga, W.; Boivin, P.; Ouarnier, N.; Fournier, F.; Fick, M. Quantification of the Inhibitory Effect of Steep Effluents on Barley Germination. Process Biochem. 2008, 43, 311–319. DOI: 10.1016/j.procbio.2007.12.001.
  • Sommer, G. Reduced Effluent Steeping in the Malting Process. J. Am. Soc. Brew. Chem. 1977, 35, 9–11. DOI: 10.1094/ASBCJ-35-0009.
  • Iwami, A.; Kajiwara, Y.; Takashita, H.; Omori, T. Effect of the Variety of Barley and Pearling Rate on the Quality of Shochu Koji. J. Inst. Brew. 2005, 111, 309–315. DOI: 10.1002/j.2050-0416.2005.tb00689.x.
  • Masuda, S.; Kikuchi, K.; Matsumoto, Y.; Sugimoto, T.; Shoji, H.; Tanabe, M. Analysis of Enzyme Production by Submerged Culture of Aspergillus oryzae Using Whole Barley. Biosci. Biotechnol. Biochem. 2009, 73, 2190–2195. DOI: 10.1271/bbb.90270.
  • Takamine, J. Enzymes of Aspergillus oryzae and the Application of Its Amyloclastic Enzyme to the Fermentation Industry. J. Ind. Eng. Chem. 1914, 6, 824–828. DOI: 10.1021/ie50070a015.
  • Schoene, L.; Fulmer, E. I.; Underkofler, L. A. Saccharification of Starchy Grain Mashes for the Alcoholic Fermentation Industry. Ind. Eng. Chem. 1940, 32, 544–547. DOI: 10.1021/ie50364a024.
  • Holl, J. Sour in an Hour? Craft Beer & Brewing. June 22, 2019. https://beerandbrewing.com/sour-in-an-hour/.
  • Chib, S.; Dogra, A.; Nandi, U.; Saran, S. Consistent Production of Kojic Acid from Aspergillus sojae SSC-3 Isolated from Rice Husk. Mol. Biol. Rep. 2019, 46, 5995–6002. DOI: 10.1007/s11033-019-05035-8.
  • Islam, M. K.; Sano, A.; Majumder, M. S. I.; Sakagami, J.-I.; Gima, S.; Hossain, M. A. Evaluation of Organic Acid Production Potential of Phosphate Solubilizing Fungi Isolated from Soils in Okinawa, Japan. Appl. Ecol. Environ. Res. 2019, 17, 15191–15201. DOI: 10.15666/aeer/1706_1519115201.
  • Upton, D. J.; McQueen-Mason, S. J.; Wood, A. J. In Silico Evolution of Aspergillus niger Organic Acid Production Suggests Strategies for Switching Acid Output. Biotechnol. Biofuels 2020, 13, 27–21. DOI: 10.1186/s13068-020-01678-z.
  • Yang, L.; Linde, T.; Hossain, A. H.; Lübeck, M.; Punt, P. J.; Lübeck, P. S. Disruption of a Putative Mitochondrial Oxaloacetate Shuttle Protein in Aspergillus carbonarius Results in Secretion of Malic Acid at the Expense of Citric Acid Production. BMC Biotechnol. 2019, 19, 72. DOI: 10.1186/s12896-019-0572-0.
  • Oguro, Y.; Nishiwaki, T.; Shinada, R.; Kobayashi, K.; Kurahashi, A. Metabolite Profile of Koji Amazake and Its Lactic Acid Fermentation Product by Lactobacillus sakei UONUMA. J. Biosci. Bioeng. 2017, 124, 178–183. DOI: 10.1016/j.jbiosc.2017.03.011.
  • Redzepi, R.; Zilber, D. The Noma Guide to Fermentation. Artisan Books: New York; 2018, pp 230–240.
  • ASBC Malt Method 4, Extract. In ASBC Methods of Analysis Online. Released 1958, rev. 1976, 1991, 2011. American Society of Brewing Chemists. 2011. DOI: 10.1094/ASBCMOA-Wort-3V.
  • ASBC Malt Method 3, Moisture. In ASBC Methods of Analysis Online. Released 1958, rev. 1976, 2010. American Society of Brewing Chemists. 2010. DOI: 10.1094/ASBCMOA-SugarsSyrups-6.
  • ASBC Malt Method 6, Diastatic Power. In ASBC Methods of Analysis Online. Released 1997, rev. 2010. American Society of Brewing Chemists. 2010. DOI: 10.1094/ASBCMOA-Malt-6.
  • ASBC Beer Method 10. Color. In ASBC Methods of Analysis Online. Released 2002, rev. 2015. American Society of Brewing Chemists. 2015. https://www.asbcnet.org/Methods/Methods/Beer-10.pdf.
  • ASBC Wort Method 13, Viscosity. In ASBC Methods of Analysis Online. Released 2021. American Society of Brewing Chemists. 2012. DOI: 10.1094/ASBCMOA-Wort-13.
  • ASBC Wort Method 5, Yeast Fermentable Extract. In ASBC Methods of Analysis Online. Released 1959, rev. 1981, 2010. American Society of Brewing Chemists. 2010. DOI: 10.1094/ASBCMOA-Wort-5.
  • Hernández, M. J. M.; Camañas, R. M. V.; Cuenca, E. M.; Alvarez-Coque, M. C. G. Determination of the Protein and Free Amino Acid Content in a Sample Using o-Phthalaldehyde and N-Acetyl-L-Cysteine. Analyst 1990, 115, 1125–1128. DOI: 10.1039/AN9901501125.
  • Tipler, A.; Reuter, W. M.; Chadwick, L. R. 2015. The Analysis of Lactic and Acetic Acids in Sour Beers by Introduction HPLC with PDA Detection. https://resources.perkinelmer.com. (accessed Mar 31, 2020).
  • ASBC Sensory Analysis Method 10, Descriptive Analysis. In ASBC Methods of Analysis Online. Released 1983, rev. 2009. American Society of Brewing Chemists. 2009. DOI: 10.1094/ASBCMOA-Sensory-10.
  • Arends, A. M.; Fox, G. P.; Henry, R. J.; Marschke, R. J.; Symons, M. H. Genetic and Environmental Variation in the Diastatic Power of Australian Barley. J. Cereal Sci. 1995, 21, 63–70. DOI: 10.1016/S0733-5210(95)80009-3.
  • Briggs, D. E.; Boulton, C. A.; Brookes, P. A.; Stevens, R. 2004. Brewing: Science and Practice. Cambridge, UK: Woodhead Publishing Limited.
  • Heredia-Olea, E.; Cortés-Ceballos, E.; Serna-Saldívar, S. O. Malting Sorghum with Aspergillus oryzae Enhances Gluten-Free Wort Yield and Extract. J. Am. Soc. Brew. Chem. 2017, 75, 116–121. DOI: 10.1094/ASBCJ-2017-2481-01.
  • Kundu, A. K.; Das, S. Production of Amylase in Liquid Culture by a Strain of Aspergillus oryzae. Appl. Microbiol. 1970, 19, 598–603. DOI: 10.1128/am.19.4.598-603.1970.
  • Ruijter, G. J. G.; Visser, J. Carbon Repression in Aspergilli. FEMS Microbiol. Lett. 1997, 151, 103–114. DOI: 10.1111/j.1574-6968.1997.tb12557.x.
  • Sugimoto, T.; Shoji, H. Indigestible Dextrin is an Excellent Inducer for α-Amylase, α-Glucosidase and Glucoamylase Production in a Submerged Culture of Aspergillus oryzae. Biotechnol. Lett. 2012, 34, 347–351. DOI: 10.1007/s10529-011-0777-3.
  • Hill, A. E.; Stewart, G. G. Free Amino Nitrogen in Brewing. Fermentation 2019, 5, 22. DOI: 10.3390/fermentation5010022.
  • Lu, J.; Li, Y. Effects of Arabinoxylan Solubilization on Wort Viscosity and Filtration When Mashing with Grist Containing Wheat and Wheat Malt. Food Chem. 2006, 98, 164–170. DOI: 10.1016/j.foodchem.2005.05.060.
  • Sadosky, P.; Schwarz, P. B.; Horsley, R. D. Effect of Arabinoxylans, β-Glucans, and Dextrins on the Viscosity and Membrane Filterability of a Beer Model Solution. J. Am. Soc. Brew. Chem. 2002, 60, 153–162. DOI: 10.1094/ASBCJ-60-0153.
  • Coote, N.; Kirsop, B. H. A Haze Consisting Largely of Pentosan. J. Inst. Brew. 1976, 82, 34–34. DOI: 10.1002/j.2050-0416.1976.tb03718.x.
  • Kimura, T.; Suzuki, H.; Furuhashi, H.; Aburatani, T.; Morimoto, K.; Karita, S.; Sakka, K.; Ohmiya, K. Molecular Cloning, Overexpression, and Purification of a Major Xylanase from Aspergillus oryzae. Biosci. Biotechnol. Biochem. 2000, 64, 2734–2738. DOI: 10.1271/bbb.64.2734.
  • Kitamoto, N.; Go, M.; Shibayama, T.; Kimura, T.; Kito, Y.; Ohmiya, K.; Tsukagoshi, N. Molecular Cloning, Purification and Characterization of Two Endo-1,4-β-Glucanases from Aspergillus oryzae KBN616. 7. Appl. Microbiol. Biotechnol. 1996, 46, 538–544. DOI: 10.1007/s002530050857.
  • Yamane, Y.-I.; Fujita, J.; Izuwa, S.; Fukuchi, K.; Shimizu, R.-I.; Hiyoshi, A.; Fukuda, H.; Mikami, S.; Kizaki, Y.; Wakabayashi, S. Properties of Cellulose-Degrading Enzymes from Aspergillus oryzae and Their Contribution to Material Utilization and Alcohol Yield in Sake Mash Fermentation. J. Biosci. Bioeng. 2002, 93, 479–484. DOI: 10.1016/S1389-1723(02)80095-0.
  • Speers, R. A.; Jin, Y.-L.; Paulson, A. T.; Stewart, R. J. Effects of β-Glucan, Shearing and Environmental Factors on the Turbidity of Wort and Beer. J. Inst. Brew. 2003, 109, 236–244. DOI: 10.1002/j.2050-0416.2003.tb00164.x.
  • Engan, S. Organoleptic Threshold Values of Some Organic Acids in Beer. J. Inst. Brew. 1974, 80, 162–163. DOI: 10.1002/j.2050-0416.1974.tb03598.x.
  • Siebert, K. J. Modeling the Flavor Thresholds of Organic Acids in Beer as a Function of Their Molecular Properties. Food Qual. Preference 1999, 10, 129–137. DOI: 10.1016/S0950-3293(98)00059-7.
  • Thakker, C.; Martínez, I.; San, K.-Y.; Bennett, G. N. Succinate Production in Escherichia coli. Biotechnol. J. 2012, 7, 213–224. DOI: 10.1002/biot.201100061.
  • Tsukatani, T.; Matsumoto, K. Flow-Injection Fluorometric Quantification of Succinate in Foodstuffs Based on the Use of an Immobilized Enzyme Reactor. Anal. Chim. Acta 2000, 416, 197–203. DOI: 10.1016/S0003-2670(00)00908-9.
  • Qureshi, A. A.; Burger, W. C.; Prentice, N. Quantitation of Potential Flavoring Compounds in Worts and Beers by HPLC. J. Am. Soc. Brew. Chem. 1979, 37, 153–160. DOI: 10.1094/ASBCJ-37-0153.
  • Chen, J. S.; Wei, C. I.; Marshall, M. R. Inhibition Mechanism of Kojic Acid on Polyphenol Oxidase. J. Agric. Food Chem. 1991, 39, 1897–1901. DOI: 10.1021/jf00011a001.
  • Nakamura, E.; Kadooka, C.; Okutsu, K.; Yoshizaki, Y.; Takamine, K.; Goto, M.; Tamaki, H.; Futagami, T. Citrate Exporter Enhances Both Extracellular and Intracellular Citric Acid Accumulation in the Koji Fungi Aspergillus luchuensis Mut. Kawachii and Aspergillus oryzae. J. Biosci. Bioeng. 2021, 131, 68–76. DOI: 10.1016/j.jbiosc.2020.09.002.
  • Cook, A. H.; Pollock, J. R. A. Chemical Aspects of Malting: Method for Assaying the Germination-Inhibitory Activity of Barley Steeping Liquors. J. Inst. Brew. 1952, 58, 407–413. DOI: 10.1002/j.2050-0416.1952.tb06190.x.
  • Guido, L.; Moreira, M. Malting. In Engineering Aspects of Cereal and Cereal-Based Products; Guine, R. D. P. F., dos Reis Correia, P. M., Eds.; CRC Press: Boca Raton, 2013; pp. 51–70. DOI: 10.1201/b15246-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.