1,369
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Inhibition of the Growth of Fusarium tricinctum and Reduction of Its Enniatin Production by Erwinia gerundensis Isolated from Barley Kernels

ORCID Icon, , , , , , , , , , & show all
Pages 340-350 | Received 14 Dec 2021, Accepted 10 Feb 2022, Published online: 30 Mar 2022

Literature cited

  • Laitila, A.; Kotaviita, E.; Peltola, P.; Home, S.; Wilhelmson, A. Indigenous Microbial Community of Barley Greatly Influences Grain Germination and Malt Quality. J. Inst. Brew. 2007, 113, 9–20. DOI: 10.1002/j.2050-0416.2007.tb00250.x.
  • Laitila, A.; Manninen, J.; Priha, O.; Smart, K.; Tsitko, I.; James, S. Characterisation of Barley-Associated Bacteria and Their Impact on Wort Separation Performance. J. Inst. Brew. 2018, 124, 314–324. DOI: 10.1002/jib.509.
  • Bianco, A.; Fancello, F.; Balmas, V.; Zara, G.; Dettori, M.; Budroni, M. The Microbiome of Sardinian Barley and Malt. J. Inst. Brew. 2018, 124, 344–351. DOI: 10.1002/jib.522.
  • Pitt, J. I.; Hocking, A. D. The Ecology of Fungal Food Spoilage. In Fungi and Food Spoilage; Pitt, J. I., Hocking, A. D., Eds.; Springer US: Boston, MA, 2009; pp 3–9.
  • Mamur, S.; Yuzbasioglu, D.; Yılmaz, S.; Erikel, E.; Unal, F. Assessment of Cytotoxic and Genotoxic Effects of Enniatin-A in Vitro. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018, 35, 1633–1644. DOI: 10.1080/19440049.2018.1486513.
  • Agriopoulou, S.; Stamatelopoulou, E.; Varzakas, T. Advances in Occurrence, Importance, and Mycotoxin Control Strategies: Prevention and Detoxification in Foods. Foods Basel Switz 2020, 9, 137. DOI: 10.3390/foods9020137.
  • Yang, J.; Li, J.; Jiang, Y.; Duan, X.; Qu, H.; Yang, B.; Chen, F.; Sivakumar, D. Natural Occurrence, Analysis, and Prevention of Mycotoxins in Fruits and Their Processed Products. Crit. Rev. Food Sci. Nutr. 2014, 54, 64–83. DOI: 10.1080/10408398.2011.569860.
  • Pitt, J. I.; Miller, J. D. A Concise History of Mycotoxin Research. J. Agric. Food Chem. 2017, 65, 7021–7033. DOI: 10.1021/acs.jafc.6b04494.
  • Ben Taheur, F.; Kouidhi, B.; Al Qurashi, Y. M. A.; Ben Salah-Abbès, J.; Chaieb, K. Review: Biotechnology of Mycotoxins Detoxification Using Microorganisms and Enzymes. Toxicon 2019, 160, 12–22. DOI: 10.1016/j.toxicon.2019.02.001.
  • Torres, A. m.; Palacios, S. a.; Yerkovich, N.; Palazzini, J. m.; Battilani, P.; Leslie, J. f.; Logrieco, A. f.; Chulze, S. n. Fusarium Head Blight and Mycotoxins in Wheat: Prevention and Control Strategies across the Food Chain. World Mycotoxin J. 2019, 12, 333–355. DOI: 10.3920/WMJ2019.2438.
  • Gautier, C.; Pinson-Gadais, L.; Verdal-Bonnin, M.-N.; Ducos, C.; Tremblay, J.; Chéreau, S.; Atanasova, V.; Richard-Forget, F. Investigating the Efficiency of Hydroxycinnamic Acids to Inhibit the Production of Enniatins by Fusarium avenaceum and Modulate the Expression of Enniatins Biosynthetic Genes. Toxins 2020, 12, 735. DOI: 10.3390/toxins12120735.
  • Alassane-Kpembi, I.; Schatzmayr, G.; Taranu, I.; Marin, D.; Puel, O.; Oswald, I. P. Mycotoxins Co-Contamination: Methodological Aspects and Biological Relevance of Combined Toxicity Studies. Crit. Rev. Food Sci. Nutr. 2017, 57, 3489–3507. DOI: 10.1080/10408398.2016.1140632.
  • Winter, G.; Pereg, L. A Review on the Relation between Soil and Mycotoxins: Effect of Aflatoxin on Field, Food and Finance. Eur. J. Soil Sci. 2019, 70, 882–897. DOI: 10.1111/ejss.12813.
  • van Egmond, H. P.; Schothorst, R. C.; Jonker, M. A. Regulations Relating to Mycotoxins in food: Perspectives in a global and European context. Anal. Bioanal. Chem. 2007, 389, 147–157. DOI: 10.1007/s00216-007-1317-9.
  • European Commission. Setting Maximum Levels for Certain Contaminants in Foodstuffs; 2006; Vol. Official Journal of the European Union, L364, pp 5−24.
  • Vaclavikova, M.; Malachova, A.; Veprikova, Z.; Dzuman, Z.; Zachariasova, M.; Hajslova, J. ‘Emerging’ Mycotoxins in Cereals Processing Chains: Changes of Enniatins during Beer and Bread Making. Food Chem. 2013, 136, 750–757. DOI: 10.1016/j.foodchem.2012.08.031.
  • Fraeyman, S.; Croubels, S.; Devreese, M.; Antonissen, G. Emerging Fusarium and Alternaria Mycotoxins: Occurrence, Toxicity and Toxicokinetics. Toxins 2017, 9, 228. DOI: 10.3390/toxins9070228.
  • Orlando, B.; Grignon, G.; Vitry, C.; Kashefifard, K.; Valade, R. Fusarium Species and Enniatin Mycotoxins in Wheat, Durum Wheat, Triticale and Barley Harvested in France. Mycotoxin Res. 2019, 35, 369–380. DOI: 10.1007/s12550-019-00363-x.
  • Jestoi, M. Emerging Fusarium-Mycotoxins Fusaproliferin, Beauvericin, Enniatins, and Moniliformin: A Review. Crit. Rev. Food Sci. Nutr. 2008, 48, 21–49. DOI: 10.1080/10408390601062021.
  • Lee, H. J.; Ryu, D. Worldwide Occurrence of Mycotoxins in Cereals and Cereal-Derived Food Products: Public Health Perspectives of Their Co-Occurrence. J. Agric. Food Chem. 2017, 65, 7034–7051. DOI: 10.1021/acs.jafc.6b04847.
  • Gautier, C.; Pinson-Gadais, L.; Richard-Forget, F. Fusarium Mycotoxins Enniatins: An Updated Review of Their Occurrence, the Producing Fusarium Species, and the Abiotic Determinants of Their Accumulation in Crop Harvests. J. Agric. Food Chem. 2020, 68, 4788–4798. DOI: 10.1021/acs.jafc.0c00411.
  • Jestoi, M.; Rokka, M.; Järvenpää, E.; Peltonen, K. Determination of Fusarium Mycotoxins Beauvericin and Enniatins (A, A1, B, B1) in Eggs of Laying Hens Using Liquid Chromatography–Tandem Mass Spectrometry (LC–MS/MS). Food Chem. 2009, 115, 1120–1127. DOI: 10.1016/j.foodchem.2008.12.105.
  • Zocher, R.; Keller, U.; Kleinkauf, H. Enniatin Synthetase, a Novel Type of Multifunctional Enzyme Catalyzing Depsipeptide Synthesis in Fusarium oxysporum. Biochemistry 1982, 21, 43–48. DOI: 10.1021/bi00530a008.
  • Haese, A.; Schubert, M.; Herrmann, M.; Zocher, R. Molecular Characterization of the Enniatin Synthetase Gene Encoding a Multifunctional Enzyme Catalysing N-Methyldepsipeptide Formation in Fusarium scirpi. Mol. Microbiol. 1993, 7, 905–914. DOI: 10.1111/j.1365-2958.1993.tb01181.x.
  • Fanelli, F.; Ferracane, R.; Ritieni, A.; Logrieco, A. F.; Mulè, G. Transcriptional Regulation of Enniatins Production by Fusarium avenaceum. J. Appl. Microbiol. 2014, 116, 390–399. DOI: 10.1111/jam.12371.
  • Wätjen, W.; Debbab, A.; Hohlfeld, A.; Chovolou, Y.; Kampkötter, A.; Edrada, R. A.; Ebel, R.; Hakiki, A.; Mosaddak, M.; Totzke, F.; et al. Enniatins A1, B and B1 from an Endophytic Strain of Fusarium tricinctum Induce Apoptotic Cell Death in H4IIE Hepatoma Cells Accompanied by Inhibition of ERK Phosphorylation. Mol. Nutr. Food Res. 2009, 53, 431–440. DOI: 10.1002/mnfr.200700428.
  • Meca, G.; Mañes, J.; Font, G.; Ruiz, M. J. Study of the Potential Toxicity of Enniatins A, A(1), B, B(1) by Evaluation of Duodenal and Colonic Bioavailability Applying an in Vitro Method by Caco-2 Cells. Toxicon 2012, 59, 1–11. DOI: 10.1016/j.toxicon.2011.10.004.
  • Rodríguez-Carrasco, Y.; Heilos, D.; Richter, L.; Süssmuth, R. D.; Heffeter, P.; Sulyok, M.; Kenner, L.; Berger, W.; Dornetshuber-Fleiss, R. Dornetshuber-Fleiss, R. Mouse Tissue Distribution and Persistence of the Food-Born Fusariotoxins Enniatin B and Beauvericin. Toxicol. Lett. 2016, 247, 35–44. DOI: 10.1016/j.toxlet.2016.02.008.
  • Prosperini, A.; Berrada, H.; Ruiz, M. J.; Caloni, F.; Coccini, T.; Spicer, L. J.; Perego, M. C.; Lafranconi, A. A Review of the Mycotoxin Enniatin B. Front. Public Health. 2017, 5, 304. DOI: 10.3389/fpubh.2017.00304.
  • Maranghi, F.; Tassinari, R.; Narciso, L.; Tait, S.; Rocca, C. L.; Felice, G. D.; Butteroni, C.; Corinti, S.; Barletta, B.; Cordelli, E. In Vivo Toxicity and Genotoxicity of Beauvericin and Enniatins. Combined Approach to Study in Vivo Toxicity and Genotoxicity of Mycotoxins Beauvericin (BEA) and Enniatin B (ENNB). EFSA Support. Publ. 2018, 15, 1406E. DOI: 10.2903/sp.efsa.2018.EN-1406.
  • Altomare, C.; Logrieco, A. F.; Gallo, A. Mycotoxins and Mycotoxigenic Fungi: Risk and Management. A Challenge for Future Global Food Safety and Security. In Encyclopedia of Mycology; Zaragoza, Ó., Casadevall, A., Eds.; Elsevier: Oxford, 2021; pp 64–93.
  • Mielniczuk, E.; Skwaryło-Bednarz, B. Fusarium Head Blight, Mycotoxins and Strategies for Their Reduction. Agronomy 2020, 10, 509. DOI: 10.3390/agronomy10040509.
  • Price, C. L.; Parker, J. E.; Warrilow, A. G. S.; Kelly, D. E.; Kelly, S. L. Azole Fungicides - Understanding Resistance Mechanisms in Agricultural Fungal Pathogens. Pest Manage. Sci. 2015, 71, 1054–1058. DOI: 10.1002/ps.4029.
  • Reis, J. A.; Paula, A. T.; Casarotti, S.; Penna, A. Lactic Acid Bacteria Antimicrobial Compounds: Characteristics and Applications. Food Eng. Rev. 2012, 4, 124–140. DOI: 10.1007/s12393-012-9051-2.
  • Dieuleveux, V.; Van Der Pyl, D.; Chataud, J.; Gueguen, M. Purification and Characterization of anti-Listeria Compounds Produced by Geotrichum candidum. Appl. Environ. Microbiol. 1998, 64, 800–803.
  • Kawtharani, H.; Snini, S. P.; Heang, S.; Bouajila, J.; Taillandier, P.; Mathieu, F.; Beaufort, S. Phenyllactic Acid Produced by Geotrichum candidum Reduces Fusarium sporotrichioides and F. langsethiae Growth and T-2 Toxin Concentration. Toxins 2020, 12, 209. DOI: 10.3390/toxins12040209.
  • Boutigny, A.-L.; Barreau, C.; Atanasova-Penichon, V.; Verdal-Bonnin, M.-N.; Pinson-Gadais, L.; Richard-Forget, F. Ferulic Acid, an Efficient Inhibitor of Type B Trichothecene Biosynthesis and Tri Gene Expression in Fusarium Liquid Cultures. Mycol. Res. 2009, 113, 746–753. DOI: 10.1016/j.mycres.2009.02.010.
  • Gauthier, L.; Bonnin-Verdal, M.-N.; Marchegay, G.; Pinson-Gadais, L.; Ducos, C.; Richard-Forget, F.; Atanasova-Penichon, V. Atanasova-Penichon, V. Fungal Biotransformation of Chlorogenic and Caffeic Acids by Fusarium graminearum: New Insights in the Contribution of Phenolic Acids to Resistance to Deoxynivalenol Accumulation in Cereals. Int. J. Food Microbiol. 2016, 221, 61–68. DOI: 10.1016/j.ijfoodmicro.2016.01.005.
  • Kulik, T.; Stuper-Szablewska, K.; Bilska, K.; Buśko, M.; Ostrowska-Kołodziejczak, A.; Załuski, D.; Perkowski, J. Sinapic Acid Affects Phenolic and Trichothecene Profiles of F. Culmorum and F. graminearum Sensu Stricto. Toxins 2017, 9, 264. DOI: 10.3390/toxins9090264.
  • Ferruz, E.; Atanasova-Pénichon, V.; Bonnin-Verdal, M.-N.; Marchegay, G.; Pinson-Gadais, L.; Ducos, C.; Lorán, S.; Ariño, A.; Barreau, C.; Richard-Forget, F. Effects of Phenolic Acids on the Growth and Production of T-2 and HT-2 Toxins by Fusarium langsethiae and F. sporotrichioides. Molecules 2016, 21, 449. DOI: 10.3390/molecules21040449.
  • Schöneberg, T.; Kibler, K.; Sulyok, M.; Musa, T.; Bucheli, T. D.; Mascher, F.; Bertossa, M.; Voegele, R. T.; Vogelgsang, S. Can Plant Phenolic Compounds Reduce Fusarium Growth and Mycotoxin Production in Cereals? Food Addit. Contam. Part A 2018, 35, 2455–2470. DOI: 10.1080/19440049.2018.1538570.
  • Laitila, A.; Sweins, H.; Vilpola, A.; Kotaviita, E.; Olkku, J.; Home, S.; Haikara, A. Lactobacillus plantarum and Pediococcus pentosaceus Starter Cultures as a Tool for Microflora Management in Malting and for Enhancement of Malt Processability. J. Agric. Food Chem. 2006, 54, 3840–3851. DOI: 10.1021/jf052979j.
  • Crowley, S.; Mahony, J.; van Sinderen, D. Current Perspectives on Antifungal Lactic Acid Bacteria as Natural Bio-Preservatives. Trends Food Sci. Technol. 2013, 33, 93–109. DOI: 10.1016/j.tifs.2013.07.004.
  • Oliveira, P. M.; Zannini, E.; Arendt, E. K. Cereal Fungal Infection, Mycotoxins, and Lactic Acid Bacteria Mediated Bioprotection: From Crop Farming to Cereal Products. Food Microbiol. 2014, 37, 78–95. DOI: 10.1016/j.fm.2013.06.003.
  • Peyer, L. C.; De Kruijf, M.; O’Mahony, J.; De Colli, L.; Danaher, M.; Zarnkow, M.; Jacob, F.; Arendt, E. K. Lactobacillus brevis R2Δ as Starter Culture to Improve Biological and Technological Qualities of Barley Malt. Eur. Food Res. Technol. 2017, 243, 1363–1374. DOI: 10.1007/s00217-017-2847-9.
  • Schmidt, M.; Lynch, K. M.; Zannini, E.; Arendt, E. K. Fundamental Study on the Improvement of the Antifungal Activity of Lactobacillus reuteri R29 through Increased Production of Phenyllactic Acid and Reuterin. Food Control. 2018, 88, 139–148. DOI: 10.1016/j.foodcont.2017.11.041.
  • Franco, T. S.; Garcia, S.; Hirooka, E. Y.; Ono, Y. S.; Santos, J. S. Dos Lactic Acid Bacteria in the Inhibition of Fusarium graminearum and Deoxynivalenol Detoxification. J. Appl. Microbiol. 2011, 111, 739–748. DOI: 10.1111/j.1365-2672.2011.05074.x.
  • Pan, D.; Mionetto, A.; Tiscornia, S.; Bettucci, L. Endophytic Bacteria from Wheat Grain as Biocontrol Agents of Fusarium graminearum and Deoxynivalenol Production in Wheat. Mycotoxin Res. 2015, 31, 137–143. DOI: 10.1007/s12550-015-0224-8.
  • Oliveira, P.; Brosnan, B.; Jacob, F.; Furey, A.; Coffey, A.; Zannini, E.; Arendt, E. K. Lactic Acid Bacteria Bioprotection Applied to the Malting Process. Part II: Substrate Impact and Mycotoxin Reduction. Food Control 2015, 51, 444–452. DOI: 10.1016/j.foodcont.2014.11.011.
  • Perczak, A.; Goliński, P.; Bryła, M.; Waśkiewicz, A. The Efficiency of Lactic Acid Bacteria against Pathogenic Fungi and Mycotoxins. Arhiv Za Higijenu Rada I Toksikologiju 2018, 69, 32–45. DOI: 10.2478/aiht-2018-69-3051.
  • Morimura, H.; Ito, M.; Yoshida, S.; Koitabashi, M.; Tsushima, S.; Camagna, M.; Chiba, S.; Takemoto, D.; Kawakita, K.; Sato, I. In Vitro Assessment of Biocontrol Effects on Fusarium Head Blight and Deoxynivalenol (DON) Accumulation by DON-Degrading Bacteria. Toxins 2020, 12, 399. DOI: 10.3390/toxins12060399.
  • Felšöciová, S.; Kowalczewski, P. Ł.; Krajčovič, T.; Dráb, Š.; Kačániová, M. Quantitative and Qualitative Composition of Bacterial Communities of Malting Barley Grain and Malt during Long-Term Storage. Agronomy 2020, 10, 1301. DOI: 10.3390/agronomy10091301.
  • Rezzonico, F.; Smits, T. H. M.; Born, Y.; Blom, J.; Frey, J. E.; Goesmann, A.; Cleenwerck, I.; de Vos, P.; Bonaterra, A.; Duffy, B.; Montesinos, E. Erwinia gerundensis Sp. Nov., a Cosmopolitan Epiphyte Originally Isolated from Pome Fruit Trees. Int. J. Syst. Evol. Microbiol. 2016, 66, 1583–1592. DOI: 10.1099/ijsem.0.000920.
  • Ghim, S.-Y.; Jin-Soo, S.; Seung-Kun, K. Erwinia gerundensis KUDC9201 Strain Having Antifungal Activity against Pathogens and Uses Thereof. Patent Summary 2018 and Available at Erwinia gerundensis KUDC9201 Strain Having Antifungal Activity against Pathogens, and Uses Thereof. Patent KR-20190086947-A - PubChem (nih.gov)
  • French Ministry of Agriculture and Food. Detection and Identification of Fusarium spp. and Microdochium nivale Species on Cereal Grains by Semi-Selective Mycological Isolation and Microbiological Study. Ref. MH.03-16: Version B); Malzéville, France, 2008.
  • Petatán-Sagahón, I.; Anducho-Reyes, M. A.; Silva-Rojas, H. V.; Arana-Cuenca, A.; Tellez-Jurado, A.; Cárdenas-Álvarez, I. O.; Mercado-Flores, Y. Isolation of Bacteria with Antifungal Activity against the Phytopathogenic Fungi Stenocarpella maydis and Stenocarpella macrospora. Int. J. Mol. Sci. 2011, 12, 5522–5537. DOI: 10.3390/ijms12095522.
  • Burmeister, H. R.; Plattner, R. D. Enniatin Production by Fusarium tricinctum and Its Effect on Germinating Wheat Seeds. Phytopathology 1987, 77, 1483–1487. DOI: 10.1094/Phyto-77-1483.
  • Wang, J.-P.; Debbab, A.; Hemphill, C. F. P.; Proksch, P. Optimization of Enniatin Production by Solid-Phase Fermentation of Fusarium tricinctum. Z. Naturforschung C 2013, 68, 223–230. DOI: 10.1515/znc-2013-5-608.
  • Suchfort, R. G. Biological Detoxification of Enniatins. Doctoral thesis, University of Göttingen, Göttingen, Germany, 2016.
  • Lagashetti, A. C.; Dufossé, L.; Singh, S. K.; Singh, P. N. Fungal Pigments and Their Prospects in Different Industries. Microorganisms 2019, 7, 604. DOI: 10.3390/microorganisms7120604.
  • Roig, M.; Meca, G.; Ferrer, E.; Mañes, J. Reduction of the Enniatins A, A1, B, B1 by an in Vitro Degradation Employing Different Strains of Probiotic Bacteria: Identification of Degradation Products by LC-MS-LIT. Toxicon 2013, 70, 44–53. DOI: 10.1016/j.toxicon.2013.04.001.
  • Meca, G.; Roig, M.; Ferrer, E.; Mañes, J. Degradation of the Bioactive Compounds Enniatins A, A1, B, B1 Employing Different Strains of Bacillus subtilis. J. Food Process. Technol. 2014, 5, 334. DOI: 10.4172/2157-7110.1000334.
  • Strub, C.; Pocaznoi, D.; Lebrihi, A.; Fournier, R.; Mathieu, F. Influence of Barley Malting Operating Parameters on T-2 and HT-2 Toxinogenesis of Fusarium langsethiae, a Worrying Contaminant of Malting Barley in Europe. Food Addit. Contam. Part A 2010, 27, 1247–1252. DOI: 10.1080/19440049.2010.487498.
  • Hu, L.; Gastl, M.; Linkmeyer, A.; Hess, M.; Rychlik, M. Fate of Enniatins and Beauvericin during the Malting and Brewing Process Determined by Stable Isotope Dilution Assays. LWT - Food Sci. Technol. 2014, 56, 469–477. DOI: 10.1016/j.lwt.2013.11.004.
  • Ng, C. A.; Pernica, M.; Yap, J.; Belakova, S.; Vaculova, K.; Branyik, T. Biocontrol Effect of Pythium oligandrum on Artificial Fusarium Culmorum Infection during Malting of Wheat. J. Cereal Sci. 2021, 100, 103258. DOI: 10.1016/j.jcs.2021.103258.
  • Saldierna Guzmán, J. P.; Reyes-Prieto, M.; Hart, S. C. Characterization of Erwinia gerundensis A4, an Almond-Derived Plant Growth-Promoting Endophyte. Front. Microbiol. 2021, 12, 687971. DOI: 10.3389/fmicb.2021.687971.
  • Moynié, L.; Milenkovic, S.; Mislin, G. L. A.; Gasser, V.; Malloci, G.; Baco, E.; McCaughan, R. P.; Page, M. G. P.; Schalk, I. J.; Ceccarelli, M.; Naismith, J. H. The Complex of Ferric-Enterobactin with Its Transporter from Pseudomonas aeruginosa Suggests a Two-Site Model. Nat. Commun. 2019, 10, 3673 DOI: 10.1038/s41467-019-11508-y.
  • Sulochana, M. B.; Jayachandra, S. Y.; Kumar, S. K. A.; Dayanand, A. Antifungal Attributes of Siderophore Produced by the Pseudomonas aeruginosa JAS-25. J. Basic Microbiol. 2014, 54, 418–424. DOI: 10.1002/jobm.201200770.
  • Kusano, T.; Berberich, T.; Tateda, C.; Takahashi, Y. Polyamines: Essential Factors for Growth and Survival. Planta 2008, 228, 367–381. DOI: 10.1007/s00425-008-0772-7.
  • Fu, X.-Z.; Chen, C.-W.; Wang, Y.; Liu, J.-H.; Moriguchi, T. Ectopic Expression of MdSPDS1 in Sweet Orange (Citrus sinensis Osbeck) Reduces Canker Susceptibility: Involvement of H₂O₂ production and transcriptional alteration. BMC Plant Biol. 2011, 11, 55 DOI: 10.1186/1471-2229-11-55.
  • Moselhy, S. S.; Asami, T.; Abualnaja, K. O.; Al-Malki, A. L.; Yamano, H.; Akiyama, T.; Wada, R.; Yamagishi, T.; Hikosaka, M.; Iwakawa, J.; et al. Spermidine, a Polyamine, Confers Resistance to Rice Blast. J. Pestic. Sci. 2016, 41, 79–82. DOI: 10.1584/jpestics.D16-008.
  • Kaur, R.; Macleod, J.; Foley, W.; Nayudu, M. Gluconic Acid: An Antifungal Agent Produced by Pseudomonas Species in Biological Control of Take-All. Phytochemistry 2006, 67, 595–604. DOI: 10.1016/j.phytochem.2005.12.011.