183
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Characterization of the Volatile Composition of Fermented Ciders Made From Dessert Apple Cultivars With and Without Maceration

, &
Received 24 Nov 2023, Accepted 12 Feb 2024, Published online: 26 Mar 2024

References

  • FAOSTAT. “Value of Agricultural Production.”; 2021 March 18, 2021. https://www.fao.org/faostat/en/#data/QV.
  • Horgan, F. G.; Launders, M.; Mundaca, E. A.; Crisol-Martínez, E. Effects of Intraspecific Competition and Larval Size on Bioconversion of Apple Pomace Inoculated with Black Soldier Fly. Agriculture 2023, 13(2), 452. DOI: 10.3390/agriculture13020452.
  • U.S. Apple Crop Facts. 2022. https://pickyourown.org/USapplecrop.htm.
  • Cairns, P.; Hamilton, L.; Racine, K.; Phetxumphou, K.; Ma, S.; Lahne, J.; Gallagher, D.; Huang, H.; Moore, A. N.; Stewart, A. C.; et al. Effects of Hydroxycinnamates and Exogenous Yeast Assimilable Nitrogen on Cider Aroma and Fermentation Performance. J. Am. Soc. Brew. Chem. 2022, 80(3), 236–247. DOI: 10.1080/03610470.2021.1968171.
  • Kessinger, J.; Earnhart, G.; Hamilton, L.; Phetxumphou, K.; Neill, C.; Stewart, A. C.; Lahne, J. Exploring Perceptions and Categorization of Virginia Hard Ciders through the Application of Sorting Tasks. J. Am. Soc. Brew. Chem. 2021, 79(2), 187–200. DOI: 10.1080/03610470.2020.1843927.
  • Leforestier, D.; Ravon, E.; Muranty, H.; Cornille, A.; Lemaire, C.; Giraud, T.; Durel, C.-E.; Branca, A. Genomic Basis of the Differences Between Cider and Dessert Apple Varieties. Evol. Appl. 2015, 8(7), 650–661. DOI: 10.1111/eva.12270.
  • Bortolini, D. G.; Benvenutti, L.; Demiate, I. M.; Nogueira, A.; Alberti, A.; Zielinski, A. A. F. A New Approach to the Use of Apple Pomace in Cider Making for the Recovery of Phenolic Compounds. LWT 2020, 126, 109316. DOI: 10.1016/j.lwt.2020.109316.
  • Vysini, E.; et al. ‘Sustainable Cider Apple Production’; 2012, p. 145.
  • VanderWeide, J.; van Nocker, S.; Gottschalk, C. Meta-Analysis of Apple (Malus × domestica Borkh.) Fruit and Juice Quality Traits for Potential Use in Hard Cider Production. Plants. People. Planet. 2022, 4(5), 463–475. DOI: 10.1002/ppp3.10262.
  • Soomro, T.; Watts, S.; Migicovsky, Z.; Myles, S. Cider and Dessert Apples: What Is the Difference? Plants. People. Planet. 2022, 4(6), 593–598. DOI: 10.1002/ppp3.10284.
  • Cline, J. A.; Plotkowski, D.; Beneff, A. Juice Attributes of Ontario-Grown Culinary (Dessert) Apples for Cider. Can. J. Plant Sci. 2021, 101(4), 536–545. DOI: 10.1139/cjps-2020-0223.
  • Littleson, B.; Chang, E.; Neill, C.; Phetxumphou, K.; Sandbrook, A.; Stewart, A.; Lahne, J. Sensory and Chemical Properties of Virginia Hard Cider: Effects of Apple Cultivar Selection and Fermentation Strategy. J. Am. Soc. Brew. Chem. 2023, 81(1), 141–154. DOI: 10.1080/03610470.2022.2057780.
  • Schreier, P.; Jennings, W. G. Flavor Composition of Wines: A Review. CRC Crit. Rev. Food Sci. Nutr. 1979, 12(1), 59–111. DOI: 10.1080/10408397909527273.
  • Ye, M.; Yue, T.; Yuan, Y. Changes in the Profile of Volatile Compounds and Amino Acids During Cider Fermentation Using Dessert Variety of Apples. Eur. Food Res. Technol. 2014, 239(1), 67–77. DOI: 10.1007/s00217-014-2204-1.
  • Corollaro, M. L.; Endrizzi, I.; Bertolini, A.; Aprea, E.; Demattè, M. L.; Costa, F.; Biasioli, F.; Gasperi, F. Sensory Profiling of Apple: Methodological Aspects, Cultivar Characterisation and Postharvest Changes. Postharvest Biol. Technol. 2013, 77, 111–120. DOI: 10.1016/j.postharvbio.2012.10.010.
  • Way, M. L.; Jones, J. E.; Longo, R.; Dambergs, R. G.; Swarts, N. D. A Preliminary Study of Yeast Strain Influence on Chemical and Sensory Characteristics of Apple Cider. Fermentation 2022, 8(9), 455. DOI: 10.3390/fermentation8090455.
  • Watts, S.; Migicovsky, Z.; McClure, K. A.; Yu, C. H. J.; Amyotte, B.; Baker, T.; Bowlby, D.; Burgher‐MacLellan, K.; Butler, L.; Donald, R.; et al. Quantifying Apple Diversity: A Phenomic Characterization of Canada’s Apple Biodiversity Collection. Plants. People. Planet. 2021, 3(6), 747–760. DOI: 10.1002/ppp3.10211.
  • Dzialo, M. C.; Park, R.; Steensels, J.; Lievens, B.; Verstrepen, K. J. Physiology, Ecology and Industrial Applications of Aroma Formation in Yeast’, FEMS Microbiol. Rev. 2017, 41(1), S95–S128. DOI: https://doi.org/10.1093/femsre/fux031.
  • Fărcaș, A. C.; Socaci, S. A.; Chiș, M. S.; Dulf, F. V.; Podea, P.; Tofană, M. Analysis of Fatty Acids, Amino Acids and Volatile Profile of Apple By-Products by Gas Chromatography-Mass Spectrometry. Molecules 2022, 27(6), 1987. DOI: 10.3390/molecules27061987.
  • Ferrer-Gallego, R.; Hernández-Hierro, J. M.; Rivas-Gonzalo, J. C.; Escribano-Bailón, M. T. Sensory Evaluation of Bitterness and Astringency Sub-Qualities of Wine Phenolic Compounds: Synergistic Effect and Modulation by Aromas. Food Res. Int. 2014, 62, 1100–1107. DOI: 10.1016/j.foodres.2014.05.049.
  • Pizarro, C.; Pérez-del-Notario, N.; González-Sáiz, J. M. Headspace Solid-Phase Microextraction for Direct Determination of Volatile Phenols in Cider. J. Sep. Sci. 2009, 32(21), 3746–3754. Available at: DOI: 10.1002/jssc.200900347.
  • Yao, H.; Su, H.; Ma, J.; Zheng, J.; He, W.; Wu, C.; Hou, Z.; Zhao, R.; Zhou, Q. Widely Targeted Volatileomics Analysis Reveals the Typical Aroma Formation of Xinyang Black Tea During Fermentation. Food Res. Int. 2023, 164, 112387. DOI: 10.1016/j.foodres.2022.112387.
  • Zhang, N.; Jing, T.; Zhao, M.; Jin, J.; Xu, M.; Chen, Y.; Zhang, S.; Wan, X.; Schwab, W.; Song, C.; et al. Untargeted Metabolomics Coupled with Chemometrics Analysis Reveals Potential Non-Volatile Markers During Oolong Tea Shaking. Food Res. Int. 2019, 123, 125–134. DOI: 10.1016/j.foodres.2019.04.053.
  • Awale, M.; Liu, C.; Kwasniewski, M. T. Workflow to Investigate Subtle Differences in Wine Volatile Metabolome Induced by Different Root Systems and Irrigation Regimes. Molecules 2021, 26(19), 6010. DOI: 10.3390/molecules26196010.
  • Meilgaard, M. C. ‘Aroma Volatiles in Beer: Purification, Flavour, Thresold and Interaction’, Geruch und Geschmackstoffe Internationales Symposium [Preprint]; 1975. https://scholar.google.com/scholar_lookup?title=Aroma+volatiles+in+beer%3A+purification%2C+flavour%2C+thresold+and+interaction&author=Meilgaard%2C+M.C.&publication_year=1975. (accessed Aug 6, 2022).
  • Cliff, M.; Stanich, K.; Trujillo, J. M.; Toivonen, P.; Forney, C. F. Determination and Prediction of Odor Thresholds for Odor Active Volatiles in a Neutral Apple Juice Matrix. J. Food Qual. 2011, 34(3), 177–186. DOI: 10.1111/j.1745-4557.2011.00383.x.
  • Feng, Y.; Cai, Y.; Fu, X.; Zheng, L.; Xiao, Z.; Zhao, M. Comparison of Aroma-Active Compounds in Broiler Broth and Native Chicken Broth by Aroma Extract Dilution Analysis (AEDA), Odor Activity Value (OAV) and Omission Experiment. Food Chem. 2018, 265, 274–280. DOI: 10.1016/j.foodchem.2018.05.043.
  • Pu, D.; Zhang, Y.; Zhang, H.; Sun, B.; Ren, F.; Chen, H.; Tang, Y. Characterization of the Key Aroma Compounds in Traditional Hunan Smoke-Cured Pork Leg (Larou, THSL) by Aroma Extract Dilution Analysis (AEDA), Odor Activity Value (OAV), and Sensory Evaluation Experiments. Foods 2020, 9(4), 413. DOI: 10.3390/foods9040413.
  • Beckerman, J., et al. Midwest Fruit Pest Management Guide, 2019–2020; 2019. Purdue University: West Lafayette, IN, USA.
  • Zhang, J.; Li, L.; Gao, N.; Wang, D.; Gao, Q.; Jiang, S. Feature Extraction and Selection from Volatile Compounds for Analytical Classification of Chinese Red Wines from Different Varieties. Anal. Chim. Acta. 2010, 662(2), 137–142. DOI: 10.1016/j.aca.2009.12.043.
  • Harbertson, J. F.; Kennedy, J. A.; Adams, D. O. Tannin in Skins and Seeds of Cabernet Sauvignon, Syrah, and Pinot noir Berries during Ripening. Am. J. Enol. Vitic. 2002, 53(1), 54–59. DOI: 10.5344/ajev.2002.53.1.54.
  • Barker, B. T. P. Long Ashton Research Station, 1903–1953. J. Horticultural Sci. 1953, 28(3), 149–151. DOI: 10.1080/00221589.1953.11513779.
  • Jun, W.; Kuichuan, S. Variations in Firmness and Sugar Content in “Huanghua” Pear (Pyrus Pyrifolia “Nakai”). J. Horticultural Sci. Biotechnol. 2005, 80(3), 307–312. DOI: 10.1080/14620316.2005.11511935.
  • Cardozo, C. J. M.; et al. Physiological and Physico-Chemical Characterization of the Soursop Fruit (Annona muricata L. cv. Elita). Revista Facultad Nacional de Agronomía Medellín 2012, 65(1), 6477–6486.
  • Alexander, T. R.; King, J.; Zimmerman, A.; Miles, C. A. Regional Variation in Juice Quality Characteristics of Four Cider Apple (Malus × domestica Borkh.) Cultivars in Northwest and Central Washington. horts. 2016, 51(12), 1498–1502. DOI: 10.21273/HORTSCI11209-16.
  • Venkatachalam, K.; Techakanon, C.; Thitithanakul, S. Impact of the ripening stage of wax apples on chemical profiles of juice and cider. ACS omega. 2018, 3(6), 6710–6718.
  • Teh, S. L.; Rostandy, B.; Awale, M.; Luby, J. J.; Fennell, A.; Hegeman, A. D. Genetic Analysis of Stilbenoid Profiles in Grapevine Stems Reveals a Major mQTL Hotspot on Chromosome 18 Associated with Disease-Resistance Motifs. Hortic. Res. 2019, 6(1), 121. DOI: 10.1038/s41438-019-0203-x.
  • Jie, Y.; Shi, T.; Zhang, Z.; Yan, Q. Identification of Key Volatiles Differentiating Aromatic Rice Cultivars Using an Untargeted Metabolomics Approach. Metabolites 2021, 11(8), 528. DOI: 10.3390/metabo11080528.
  • Abrodo, P. A.; Llorente, D. D.; Corujedo, S. J.; de la Fuente, E. D.; Álvarez, M. D. G.; Gomis, D. B. Characterisation of Asturian Cider Apples on the Basis of their Aromatic Profile by High-Speed Gas Chromatography and Solid-Phase Microextraction. Food Chem. 2010, 121(4), 1312–1318. DOI: 10.1016/j.foodchem.2010.01.068.
  • Garde-Cerdán, T.; Ancín-Azpilicueta, C. Effect of the Addition of Different Quantities of Amino Acids to Nitrogen-Deficient Must on the Formation of Esters, Alcohols, and Acids During Wine Alcoholic Fermentation. LWT - Food Sci. Technol. 2008, 41(3), 501–510. DOI: 10.1016/j.lwt.2007.03.018.
  • Eleutério dos Santos, C. M.; Pietrowski, G. d A. M.; Braga, C. M.; Rossi, M. J.; Ninow, J.; Machado dos Santos, T. P.; Wosiacki, G.; Jorge, R. M. M.; Nogueira, A. Apple Aminoacid Profile and Yeast Strains in the Formation of Fusel Alcohols and Esters in Cider Production. J. Food Sci. 2015, 80(6), C1170–C1177. DOI: 10.1111/1750-3841.12879.
  • Alberti, A.; Machado dos Santos, T. P.; Ferreira Zielinski, A. A.; Eleutério dos Santos, C. M.; Braga, C. M.; Demiate, I. M.; Nogueira, A. Impact on Chemical Profile in Apple Juice and Cider Made from Unripe, Ripe and Senescent Dessert Varieties. LWT - Food Sci. Technol. 2016, 65, 436–443. DOI: 10.1016/j.lwt.2015.08.045.
  • Xu, Y.; Fan, W.; Qian, M. C. Characterization of Aroma Compounds in Apple Cider Using Solvent-Assisted Flavor Evaporation and Headspace Solid-Phase Microextraction. J. Agric. Food Chem. 2007, 55(8), 3051–3057. DOI: 10.1021/jf0631732.
  • Rosend, J.; Kuldjärv, R.; Rosenvald, S.; Paalme, T. The Effects of Apple Variety, Ripening Stage, and Yeast Strain on the Volatile Composition of Apple Cider. Heliyon 2019, 5(6), e01953. DOI: 10.1016/j.heliyon.2019.e01953.
  • Coelho, E.; Pinto, M.; Bastos, R.; Cruz, M.; Nunes, C.; Rocha, S. M.; Coimbra, M. A. Concentrate Apple Juice Industry: Aroma and Pomace Valuation as Food Ingredients. Appl. Sci. 2021, 11(5), 2443. DOI: 10.3390/app11052443.
  • Piškur, J.; Compagno, C. (eds). Molecular Mechanisms in Yeast Carbon Metabolism; Springer: Berlin, Heidelberg, 2014. DOI: 10.1007/978-3-642-55013-3.
  • Lambrechts, M. G.; Pretorius, I. S. Yeast and its Importance to Wine Aroma - A Review. SAJEV. 2019, 21(1), 97–129. DOI: 10.21548/21-1-3560.
  • Wu, J.; Gao, H.; Zhao, L.; Liao, X.; Chen, F.; Wang, Z.; Hu, X. Chemical Compositional Characterization of Some Apple Cultivars. Food Chem. 2007, 103(1), 88–93. DOI: 10.1016/j.foodchem.2006.07.030.
  • Bicalho, B.; Pereira, A. S.; Aquino Neto, F. R.; Pinto, A. C.; Rezende, C. M. Application of High-Temperature Gas Chromatography − Mass Spectrometry to the Investigation of Glycosidically Bound Components Related to Cashew Apple (Anacardium occidentale L. Var. nanum) Volatiles. J. Agric. Food Chem. 2000, 48(4), 1167–1174. DOI: 10.1021/jf9909252.
  • Grigoras, C. G.; Destandau, E.; Fougère, L.; Elfakir, C. Evaluation of Apple Pomace Extracts as a Source of Bioactive Compounds. Ind. Crops Prod. 2013, 49, 794–804. DOI: 10.1016/j.indcrop.2013.06.026.
  • López, M. L.; Lavilla, M. T.; Riba, M.; Vendrell, M. Comparison of Volatile Compounds in Two Seasons in Apples: Golden Delicious and Granny Smith. J. Food Qual. 1998, 21(2), 155–166. DOI: 10.1111/j.1745-4557.1998.tb00512.x.
  • Mina, M.; Tsaltas, D. Contribution of Yeast in Wine Aroma and Flavour. In Yeast-industrial applications, 2017; pp. 117–134. DOI: 10.5772/intechopen.70656.
  • Krstic, M. P.; Johnson, D. L.; Herderich, M. J. Review of Smoke Taint in Wine: Smoke-Derived Volatile Phenols and Their Glycosidic Metabolites in Grapes and Vines as Biomarkers for Smoke Exposure and their Role in the Sensory Perception of Smoke Taint: Review of Smoke Taint in Wine. Aust. J. Grape Wine Res. 2015, 21, 537–553. DOI: 10.1111/ajgw.12183.
  • Morales, A. L.; Duque, C. Free and Glycosidically Bound Volatiles in the Mammee Apple (Mammea americana) Fruit. Eur. Food Res. Technol. 2002, 215(3), 221–226. DOI: 10.1007/s00217-002-0546-6.
  • USDA Agricultural Marketing Service. Apple Inspection Instructions; 2005. https://www.ams.usda.gov/sites/default/files/media/Apple_Inspection_Instructions%5B1%5D.pdf.