23
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Screening of a High Ethanol-Producing Saccharomyces cerevisiae Strain and Its Effects on the Dynamics of the Microbial Community and Flavor During Baijiu Solid-State Fermentation

ORCID Icon, , , , , , , , , & show all
Received 17 Jan 2024, Accepted 01 Apr 2024, Published online: 27 Jun 2024

Literature cited

  • Zheng, X.-W.; Han, B.-Z. Baijiu (白酒), Chinese liquor: History, Classification and Manufacture. J. Ethn. Foods. 2016, 3(1), 19–25. DOI: 10.1016/j.jef.2016.03.001.
  • Chen, S. X.; Perez-Samper, G.; Herrera-Malaver, B.; Zhu, L. P.; Liu, Y. C.; Steensels, J.; Yang, Q.; Verstrepen, K. J. Breeding of New Saccharomyces cerevisiae Hybrids with Reduced Higher Alcohol Production for Light-Aroma-Type-Xiaoqu Baijiu Production. J. Am. Soc. Brew. Chem. 2023, 81(2), 233–241. DOI: 10.1080/03610470.2022.2033608.
  • Wang, M. Y.; Zhao, Q. S.; Su, C.; Yang, J. G. Analysis of the Microbial Community Structure during Brewing of Sichuan Xiaoqu Baijiu. J. Am. Soc. Brew. Chem. 2019, 77 (3), 210–219. DOI: 10.1080/03610470.2019.1605033.
  • Fan, W. L.; Xu, Y.; Zhang, Y. H. Characterization of Pyrazines in Some Chinese Liquors and their Approximate Concentrations. J. Agric. Food Chem. 2007, 55(24), 9956–9962. DOI: 10.1021/jf071357q.
  • Jin, G. Y.; Zhu, Y.; Xu, Y. Mystery behind Chinese Liquor Fermentation. Trends Food Sci. Technol. 2017, 63, 18–28. DOI: 10.1016/j.tifs.2017.02.016.
  • Han, P. J.; Luo, L. J.; Han, Y.; Song, L.; Zhen, P.; Han, D. Y.; Wei, Y. H.; Zhou, X.; Wen, Z.; Qiu, J. Z.; et al. Microbial Community Affects Daqu Quality and the Production of Ethanol and Flavor Compounds in Baijiu Fermentation. Foods. 2023, 12(15), 2936. DOI: 10.3390/foods12152936.
  • He, G. Q.; Huang, J.; Zhou, R. Q.; Wu, C. D.; Jin, Y. Effect of Fortified Daqu on the Microbial Community and Flavor in Chinese Strong-Flavor Liquor Brewing Process. Front. Microbiol. 2019, 10, 56. DOI: 10.3389/fmicb.2019.00056.
  • Zhu, Y.; Tramper, J. Koji – Where East Meets West in Fermentation. Biotechnol. Adv. 2013, 31(8), 1448–1457. DOI: 10.1016/j.biotechadv.2013.07.001.
  • Fan, G. S.; Sun, B. G.; Xu, D.; Teng, C.; Fu, Z. L.; Du, Y. H.; Li, X. T. Isolation and ldentifation of Nigh-Yield Ethyl Acetate-Producing Yeast from Gujinggony Daqu and Its Fermentation Charadecistics. J. Am. Soc. Brew. Chem. 2018, 76(2), 117–124. DOI: 10.1080/03610470.2017.1396849.
  • He, G. Q.; Dong, Y.; Huang, J.; Wang, X. J.; Zhang, S. Y.; Wu, C. D.; Jin, Y.; Zhou, R. Q. Alteration of Microbial Community for Improving Flavor Character of Daqu by Inoculation with Bacillus velezensis and Bacillus subtilis. LWT-Food Sci. Technol. 2019, 111, 1–8. DOI: 10.1016/j.lwt.2019.04.098.
  • Wang, P.; Wu, Q.; Jiang, X. J.; Wang, Z. Q.; Tang, J. L.; Xu, Y. Bacillus licheniformis Affects the Microbial Community and Metabolic Profile in the Spontaneous Fermentation of Daqu Starter for Chinese Liquor Making. Int. J. Food Microbiol. 2017, 250, 59–67. DOI: 10.1016/j.ijfoodmicro.2017.03.010.
  • Liu, P.; Liu, Y.; Li, C.; Li, X.; Cheng, L.; Zhu, Y.; Fan, G. Optimization of Cultural Conditions for Ethyl Alcohol Production by Saccharomyces cerevisiae Y3401 and Its Aroma-Producing Characteristics. J. Chin. Inst. Food Sci. Technol. 2021, 21(4), 168–178.
  • Zha, M. S.; Sun, B. G.; Wu, Y. P.; Yin, S.; Wang, C. T. Improving Flavor Metabolism of Saccharomyces cerevisiae by Mixed Culture with Wickerhamomyces anomalus for Chinese Baijiu Making. J. Biosci. Bioeng. 2018, 126(2), 189–195. DOI: 10.1016/j.jbiosc.2018.02.010.
  • Fu, G. M.; Cai, W. Q.; Dong, B. A.; Wan, Y.; Pan, F.; Zheng, F. P.; Chen, Y. R.; Deng, M. F.; Huang, B. J. Effects of Bio-Augmented Daqu on Microbial Community, Aroma Compounds and Physicochemical Parameters of Fermented Grains during the Brewing of Chinese Special-Flavor Baijiu. J. Sci. Food Agric. 2023, 103(1), 273–282. DOI: 10.1002/jsfa.12139.
  • Fan, G. S.; Teng, C.; Xu, D.; Fu, Z. L.; Liu, P. X.; Wu, Q. H.; Yang, R.; Li, X. T. Improving Ethyl Acetate Production in Baijiu Manufacture by Wickerhamomyces anomalus and Saccharomyces cerevisiae Mixed Culture Fermentations. Biomed Res. Int. 2019, 2019, 1–11. DOI: 10.1155/2019/1470543.
  • Hanišáková, N.; Vítězová, M.; Rittmann, S. K.-M R. The Historical Development of Cultivation Techniques for Methanogens and Other Strict Anaerobes and Their Application in Modern Microbiology. Microorganisms. 2022, 10(2), 412. DOI: 10.3390/microorganisms10020412.
  • Suzuki, T.; Nishikawa, C.; Seta, K.; Shigeno, T.; Nakajima-Kambe, T. Ethanol Production from Glycerol-Containing Biodiesel Waste by Klebsiella variicola Shows Maximum Productivity Under Alkaline Conditions. N Biotechnol. 2014, 31(3), 246–253. DOI: 10.1016/j.nbt.2014.03.005.
  • Wang, N.; Zhang, P.; Zhou, X.; Zheng, J.; Ma, Y.; Liu, C.; Wu, T.; Li, H.; Wang, X.; Wang, H.; et al. Isolation, Identification, and Characterization of an Acid-Tolerant Pichia kudriavzevii and Exploration of Its Acetic Acid Tolerance Mechanism. Fermentation-Basel. 2023, 9(6), 540. DOI: 10.3390/fermentation9060540.
  • Tamura, K.; Nei, M.; Kumar, S. Prospects for Inferring very Large Phylogenies by using the Neighbor-Joining Method. Proc. Natl. Acad. Sci. USA. 2004, 101(30), 11030–11035. DOI: 10.1073/pnas.0404206101.
  • Kruasuwan, W.; Puseenam, A.; Am-In, S.; Trakarnpaiboon, S.; Sornlek, W.; Kocharin, K.; Jindamorakot, S.; Tanapongpipat, S.; Bai, F. Y.; Roongsawang, N. Evaluation of Thermotolerant and Ethanol-Tolerant Saccharomyces cerevisiae as an Alternative Strain for Bioethanol Production from Industrial Feedstocks. 3 Biotech. 2023, 13(1), 23. DOI: 10.1007/s13205-022-03436-4.
  • Abbott, D. A.; Suir, E.; van Maris, A. J. A.; Pronk, J. T. Physiological and Transcriptional Responses to High Concentrations of Lactic Acid in Anaerobic Chemostat Cultures of Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2008, 74(18), 5759–5768. DOI: 10.1128/aem.01030-08.
  • Zhang, B.; Li, R. Q.; Yu, L. H.; Wu, C. C.; Liu, Z.; Bai, F. Y.; Yu, B.; Wang, L. M. l-Lactic Acid Production via Sustainable Neutralizer-Free Route by Engineering Acid-Tolerant Yeast Pichia kudriavzevii. J. Agric. Food Chem. 2023, 71(29), 11131–11140. DOI: 10.1021/acs.jafc.3c03163.
  • Tian, Z. L.; Hou, L. Z.; Hu, M.; Gao, Y. X.; Li, D. F.; Fan, B.; Wang, F. Z.; Li, S. Y. Optimization of Sporulation Conditions for Bacillus subtilis BSNK-5. Processes. 2022, 10(6), 1133. DOI: 10.3390/pr10061133.
  • Fan, G. S.; Du, Y. H.; Fu, Z. L.; Chen, M.; Wang, Z.; Liu, P. X.; Li, X. T. Characterisation of Physicochemical Properties, Flavour Components and Microbial Community in Chinese Guojing Roasted Sesame-Like Flavour Daqu. J. Inst. Brew. 2020, 126(1), 105–115. DOI: 10.1002/jib.583.
  • Liu, C. J.; Gong, X. W.; Zhao, G.; Htet, M. N. S.; Jia, Z. Y.; Yan, Z. K.; Liu, L. L.; Zhai, Q. H.; Huang, T.; Deng, X. P.; et al. Liquor Flavour is Associated With the Physicochemical Property and Microbial Diversity of Fermented Grains in Waxy and Non-waxy Sorghum (Sorghum bicolor) During Fermentation. Front. Microbiol. 2021, 12, 618458. DOI: 10.3389/fmicb.2021.618458.
  • Vuong, T. M. D.; Zeng, J. Y.; Man, X. L. Soil Fungal and Bacterial Communities in Southern Boreal Forests of the Greater Khingan Mountains and their Relationship with Soil Properties. Sci. Rep. 2020, 10(1), 22025. DOI: 10.1038/s41598-020-79206-0.
  • Li, W. W.; Fan, G. S.; Fu, Z. L.; Wang, W. H.; Xu, Y. Q.; Teng, C.; Zhang, C. N.; Yang, R.; Sun, B. G.; Li, X. T. Effects of Fortification of Daqu with Various Yeasts on Microbial Community Structure and Flavor Metabolism. Food Res. Int. 2020, 129, 108837. DOI: 10.1016/j.foodres.2019.108837.
  • Liang, E. R.; Zhang, C. N.; Lang, Y.; Li, X. T.; Hu, S. L.; Xu, Y. Q.; Li, W. W.; Sun, B. G. Changes in Microbial Communities and Volatile Compounds during the Seventh Round of Sauce-Flavor Baijiu Fermentation in Beijing Region. J. Am. Soc. Brew. Chem. 2023, 1–10. DOI: 10.1080/03610470.2023.2253704.
  • Liu, T. T.; Zhong, J. J. Impact of Oxygen Supply on Production of a Novel Ganoderic Acid in Saccharomyces cerevisiae Fermentation. Process Biochem. 2021, 106, 176–183. DOI: 10.1016/j.procbio.2021.04.011.
  • Visser, W.; Scheffers, W. A.; Batenburg-van der Vegte, W. H.; van Dijken, J. P. Oxygen Requirements of Yeasts. Appl. Environ. Microbiol. 1990, 56(12), 3785–3792. DOI: 10.1128/aem.56.12.3785-3792.1990.
  • Zakria, R. M.; Gimbun, J.; Asras, M. F. F.; Chua, G. K. Magnesium Sulphate and Beta-Alanine Enhanced The Ability of Kluyveromyces marxianus Producing Bioethanol Using Oil Palm Trunk Sap. Biofuels-Uk. 2017, 8(5), 595–603. DOI: 10.1080/17597269.2016.1242690.
  • Lee, S. B.; Tremaine, M.; Place, M.; Liu, L. S.; Pier, A.; Krause, D. J.; Xie, D.; Zhang, Y. P.; Landick, R.; Gasch, A. P.; et al. Crabtree/Warburg-like Aerobic Xylose Fermentation by Engineered Saccharomyces cerevisiae. Metab. Eng. 2021, 68, 119–130. DOI: 10.1016/j.ymben.2021.09.008.
  • Pfeiffer, T.; Morley, A. An Evolutionary Perspective on the Crabtree Effect. Front. Mol. Biosci. 2014, 1, 17. DOI: 10.3389/fmolb.2014.00017.
  • Belloch, C.; Orlic, S.; Barrio, E.; Querol, A. Fermentative Stress Adaptation of Hybrids within the Saccharomyces sensu stricto Complex. Int. J. Food Microbiol. 2008, 122(1–2), 188–195. DOI: 10.1016/j.ijfoodmicro.2007.11.083.
  • Domingues, L.; Guimarães, P. M. R.; Oliveira, C. Metabolic Engineering of Saccharomyces cerevisiae for Lactose/Whey Fermentation. Bioeng. Bugs. 2010, 1(3), 164–171. DOI: 10.4161/bbug.1.3.10619.
  • Kim, S. R.; Park, Y. C.; Jin, Y. S.; Seo, J. H. Strain Engineering of Saccharomyces cerevisiae for Enhanced Xylose Metabolism. Biotechnol. Adv. 2013, 31(6), 851–861. DOI: 10.1016/j.biotechadv.2013.03.004.
  • Zabed, H.; Faruq, G.; Sahu, J. N.; Azirun, M. S.; Hashim, R.; Boyce, A. N. Bioethanol Production from Fermentable Sugar Juice. Sci. World J. 2014, 2014, 957102. DOI: 10.1155/2014/957102.
  • Mohd Azhar, S. H.; Abdulla, R.; Jambo, S. A.; Marbawi, H.; Gansau, J. A.; Mohd Faik, A. A.; Rodrigues, K. F. Yeasts in Sustainable Bioethanol Production: A Review. Biochem. Biophys. Rep. 2017, 10, 52–61. DOI: 10.1016/j.bbrep.2017.03.003.
  • Limtong, S.; Sringiew, C.; Yongmanitchai, W. Production of Fuel Ethanol at High Temperature from Sugar Cane Juice by a Newly Isolated Kluyveromyces marxianus. Bioresour. Technol. 2007, 98(17), 3367–3374. DOI: 10.1016/j.biortech.2006.10.044.
  • Nuanpeng, S.; Thanonkeo, S.; Klanrit, P.; Yamada, M.; Thanonkeo, P. Optimization Conditions for Ethanol Production from Sweet Sorghum Juice by Thermotolerant Yeast Saccharomyces cerevisiae: Using a Statistical Experimental Design. Fermentation-Basel. 2023, 9(5), 450. DOI: 10.3390/fermentation9050450.
  • Kayali, H. A.; Tarhan, L.; Soran, H. Variations of Alcohol Dehydrogenase Activity and Fermentative Pyruvate, Ethanol Production of F-equiseti and F-acuminatum depend on the Yeast Extract and Urea Concentrations. Enzyme Microb. Technol. 2005, 36(5–6), 706–711. DOI: 10.1016/j.enzmictec.2004.12.015.
  • Cruz, S. H.; Cilli, E. M.; Ernandes, J. R. Structural Complexity of the Nitrogen Source and Influence on Yeast Growth and Fermentation. J. Inst. Brew. 2002, 108(1), 54–61. DOI: 10.1002/j.2050-0416.2002.tb00124.x.
  • Pradeep, P.; Reddy, O. V. S.; Mohan, P. R.; Ko, S. Process Optimization for Ethanol Production from Very High Gravity (VHG) Finger Millet Medium Using Response Surface Methodology. Iran. J. Biotechnol. 2012, 10(3), 168–174.
  • Narendranath, N. V.; Thomas, K. C.; Ingledew, W. M. Acetic Acid and Lactic Acid Inhibition of Growth of Saccharomyces cerevisiae by Different Mechanisms. J. Am. Soc. Brew. Chem. 2001, 59(4), 187–194. DOI: 10.1094/ASBCJ-59-0187.
  • Narendranath, N. V.; Power, R. Relationship between pH and Medium Dissolved Solids in Terms of Growth and Metabolism of Lactobacilli and Saccharomyces cerevisiae during Ethanol Production. Appl. Environ. Microbiol. 2005, 71(5), 2239–2243. DOI: 10.1128/aem.71.5.2239-2243.2005.
  • Mira, N. P.; Teixeira, M. C.; Sa-Correia, I. Adaptive Response and Tolerance to Weak Acids in Saccharomyces cerevisiae: A Genome-Wide View. OMICS. 2010, 14(5), 525–540. DOI: 10.1089/omi.2010.0072.
  • Warnecke, T.; Gill, R. T. Organic Acid Toxicity, Tolerance, and Production in Escherichia coli Biorefining Applications. Microb. Cell Fact. 2005, 4(1), 8. DOI: 10.1186/1475-2859-4-25.
  • Lambert, R. J.; Stratford, M. Weak-Acid Preservatives: Modelling Microbial Inhibition and Response. J. Appl. Microbiol. 1999, 86(1), 157–164. DOI: 10.1046/j.1365-2672.1999.00646.x.
  • Yu, J. L.; Zhang, X.; Tan, T. W. Ethanol Production by Solid State Fermentation of Sweet Sorghum Using Thermotolerant Yeast Strain. Fuel Process. Technol. 2008, 89 (11), 1056–1059. DOI: 10.1016/j.fuproc.2008.04.008.
  • Wanasundara, U.; Shahidi, F. Stabilization of Seal Blubber and Menhaden Oils with Green Tea Catechins. J. Americ. Oil Chem. Soc. 1996, 73(9), 1183–1190. DOI: 10.1007/BF02523382.
  • Verstrepen, K. J.; Van Laere, S. D. M.; Vanderhaegen, B. M. P.; Derdelinckx, G.; Dufour, J. P.; Pretorius, I. S.; Winderickx, J.; Thevelein, J. M.; Delvaux, F. R. Expression Levels of the Yeast Alcohol Acetyltransferase Genes ATF1, Lg-ATF1, and ATF2 Control the Formation of a Broad Range of Volatile Esters. Appl. Environ. Microbiol. 2003, 69(9), 5228–5237. DOI: 10.1128/aem.69.9.5228-5237.2003.
  • Fan, G. S.; Sun, B. G.; Fu, Z. L.; Xia, Y. Q.; Huang, M. Q.; Xu, C. Y.; Li, X. T. Analysis of Physicochemical Indices, Volatile Flavor Components, and Microbial Community of a Light-Flavor Daqu. J. Am. Soc. Brew. Chem. 2018, 76(3), 209–218. DOI: 10.1080/03610470.2018.1424402.
  • Adesulu-Dahunsi, A. T.; Dahunsi, S. O.; Olayanju, A. Synergistic Microbial Interactions between Lactic Acid Bacteria and Yeasts During Production of Nigerian Indigenous Fermented Foods and Beverages. Food Control. 2020, 110, 106963. DOI: 10.1016/j.foodcont.2019.106963.
  • Song, G.; He, Z.; Wang, X. Y.; Zhao, M. W.; Cao, X. Y.; Lin, X. P.; Ji, C. F.; Zhang, S. F.; Liang, H. P. Improving the Quality of Suancai by Inoculating with Lactobacillus plantarum and Pediococcus pentosaceus. Food Res. Int. 2021, 148, 110581. DOI: 10.1016/j.foodres.2021.110581.
  • Liang, H. P.; He, Z.; Wang, X. Y.; Song, G.; Chen, H. Y.; Lin, X. P.; Ji, C. F.; Zhang, S. F. Bacterial Profiles and Volatile Flavor Compounds in Commercial Suancai with Varying Salt Concentration from Northeastern China. Food Res. Int. 2020, 137, 109384. DOI: 10.1016/j.foodres.2020.109384.
  • Liu, Y. F.; Wan, B.; Yang, F.; Zhang, X. L.; Li, J. H.; Du, G. C.; Wang, L.; Chen, J. Metabolomics-Driven Elucidation of Interactions between Saccharomyces cerevisiae and Lactobacillus panis from Chinese Baijiu Fermentation Microbiome. Fermentation-Basel. 2022, 8(1), 33. DOI: 10.3390/fermentation8010033.
  • Cai, T.; Zhao, Q. H.; Xiang, W. L.; Zhu, L.; Rao, Y.; Tang, J. HigBA Toxin-Antitoxin System of Weissella cibaria is Involved in Response to the Bile Salt Stress. J. Sci. Food Agric. 2022, 102(14), 6749–6756. DOI: 10.1002/jsfa.12042.
  • Chen, C.; Xiong, Y.; Xie, Y. H.; Zhang, H. X.; Jiang, K. X.; Pang, X. N.; Huang, M. Q. Metabolic Characteristics of Lactic Acid Bacteria and Interaction with Yeast Isolated from Light-Flavor Baijiu Fermentation. Food Biosci. 2022, 50, 102102. DOI: 10.1016/j.fbio.2022.102102.
  • Huang, X. N.; Fan, Y.; Lu, T.; Kang, J. M.; Pang, X. N.; Han, B. Z.; Chen, J. Y. Composition and Metabolic Functions of the Microbiome in Fermented Grain during Light-Flavor Baijiu Fermentation. Microorganisms. 2020, 8(9), 1281. DOI: 10.3390/microorganisms8091281.
  • Xu, Y. Q.; Zhao, J. R.; Liu, X.; Zhang, C. S.; Zhao, Z. G.; Li, X. T.; Sun, B. G. Flavor Mystery of Chinese Traditional Fermented Baijiu: The Great Contribution of Ester Compounds. Food Chem. 2022, 369, 130920. DOI: 10.1016/j.foodchem.2021.130920.
  • Li, K. M.; Chen, Y. R.; Liu, T.; Deng, M. F.; Xu, Z. W.; Fu, G. M.; Wan, Y.; Chen, F.; Zheng, F. P. Analysis of Spatial Distribution of Bacterial Community Associated with Accumulation of Volatile Compounds in Jiupei during the Brewing of Special-Flavor Liquor. LWT-Food Sci. Technol. 2020, 130, 109620. DOI: 10.1016/j.lwt.2020.109620.
  • Wei, Y.; Zou, W.; Shen, C. H.; Yang, J. G. Basic Flavor Types and Component Characteristics of Chinese Traditional Liquors: A Review. J. Food Sci. 2020, 85(12), 4096–4107. DOI: 10.1111/1750-3841.15536.
  • Cui, Z. Z.; Wang, Z. W.; Zheng, M. Y.; Chen, T. Advances in Biological Production of Acetoin: A Comprehensive Overview. Crit. Rev. Biotechnol. 2022, 42(8), 1135–1156. DOI: 10.1080/07388551.2021.1995319.
  • Wang, X. S.; Du, H.; Xu, Y. Source Tracking of Prokaryotic Communities in Fermented Grain of Chinese Strong-Flavor Liquor. Int. J. Food Microbiol. 2017, 244, 27–35. DOI: 10.1016/j.ijfoodmicro.2016.12.018.
  • Cavin, J. F.; Andioc, V.; Etievant, P. X.; Divies, C. Ability of Wine Lactic Acid Bacteria to Metabolize Phenol Carboxylic Acids. Am. J. Enol. Vitic. 1993, 44(1), 76–80. DOI: 10.5344/ajev.1993.44.1.76.
  • Chatonnet, P.; Dubourdieu, D.; Boidron, J. N. The Influence of Brettanomyces/Dekkera sp. Yeasts and Lactic Acid Bacteria on the Ethylphenol Content of Red Wines. Am. J. Enol. Vitic. 1995, 46(4), 463–468. DOI: 10.5344/ajev.1995.46.4.463.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.