Publication Cover
Experimental Aging Research
An International Journal Devoted to the Scientific Study of the Aging Process
Volume 49, 2023 - Issue 1
261
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Nonspecific Effects of Normal Aging on Taxonomic and Thematic Semantic Processing

ORCID Icon, , , , , & show all
Pages 18-40 | Received 13 Sep 2021, Accepted 18 Feb 2022, Published online: 02 Mar 2022

References

  • Annett, M. (1959). The classification of instances of four common class concepts by children and adults. British Journal of Educational Psychology, 29(3), 223–236. doi:10.1111/j.2044-8279.1959.tb01503.x
  • Belliard, S., Merck, C., Jonin, P. Y., & Vérin, M. (2013). Semantic dementia: Aspects of the early diagnosis. Revue Neurologique, 169(10), 806–810. doi:10.1016/j.neurol.2013.07.007
  • Bozeat, S., Lambon Ralph, M. A., Patterson, K., Garrard, P., & Hodges, J. R. (2000). Non-verbal semantic impairment in semantic dementia. Neuropsychologia, 38(9), 1207–1215. doi:10.1016/S0028-3932(00)00034-8
  • Bueno, A. P. A., Sato, J. R., & Hornberger, M. (2019). Eye tracking—The overlooked method to measure cognition in neurodegeneration?. Neuropsychologia, 133, 107191. doi:10.1016/j.neuropsychologia.2019.107191
  • de Zubicaray, G. I., Hansen, S., & McMahon, K. L. (2013). Differential processing of thematic and categorical conceptual relations in spoken word production. Journal of Experimental Psychology. General, 142(1), 131–142. doi:10.1037/a0028717
  • Declaration of Helsinki. (1964). Ethical principles for medical research involving human subjects. adopted by the 18th world medical association-general assembly, Helsinki, Finland, June and amended by the 64th World Medical Association-General Assembly, Fortaleza, Brazil, October 2013.
  • Denney, N. W. (1974). Evidence for developmental changes in categorization criteria for children and adults. Human Development, 17(1), 41–53. doi:10.1159/000271332
  • Denney, D. R. (1975). Developmental changes in concept utilization among normal and retarded children. Developmental Psychology, 11(3), 359–368. doi:10.1037/h0076600
  • Estes, Z., Golonka, S., & Jones, L. L. (2011). Thematic thinking: The apprehension and consequences of thematic relations. Psychology of Learning and Motivation, 54, 249–294.
  • Faria, A. V., Race, D., Kim, K., & Hillis, A. E. (2018). The eyes reveal uncertainty about object distinctions in semantic variant primary progressive aphasia. Cortex, 103, 372–381. doi:10.1016/j.cortex.2018.03.023
  • Geller, J., Landrigan, J.-F., & Mirman, D. (2019). A pupillometric examination of cognitive control in taxonomic and thematic semantic memory. Journal of Cognition, 2(1), 6. doi:10.5334/joc.56
  • Giffard, B., Desgranges, B., Kerrouche, N., Piolino, P., & Eustache, F. (2003). The hyperpriming phenomenon in normal aging: A consequence of cognitive slowing?. Neuropsychology, 17(4), 594–601. doi:10.1037/0894-4105.17.4.594
  • Gorno-Tempini, M. L., Hillis, A. E., Weintraub, S., Kertesz, A., Mendez, M., Cappa, S. F., Grossman, M. (2011). Classification of primary progressive aphasia and its variants. Neurology, 76(11), 1006–1014. doi:10.1212/WNL.0b013e31821103e6
  • Hoffman, P. (2018). An individual differences approach to semantic cognition: Divergent effects of age on representation, retrieval and selection. Scientific Reports, 8(1), 8145. doi:10.1038/s41598-018-26569-0
  • Hoffman, P. (2019). Divergent effects of healthy ageing on semantic knowledge and control: Evidence from novel comparisons with semantically impaired patients. Journal of Neuropsychology, 13(3), 462–484. doi:10.1111/jnp.12159
  • Huriet Act, . (1988). Loi n° 88-1138 du 20 décembre 1988 relative à la protection des personnes qui se prêtent à des recherches biomédicales [ Act No. 88-1138 of December 20th, 1988 on the protection of persons consenting to biomedical research]. https://www.legifrance.gouv.fr/affichTexte.do?cidTexteJORFTEXT000000508831
  • Jefferies, E. (2013). The neural basis of semantic cognition: Converging evidence from neuropsychology, neuroimaging and TMS. Cortex, 49(3), 611–625. doi:10.1016/j.cortex.2012.10.008
  • Jefferies, E., Thompson, H., Cornelissen, P., & Smallwood, J. (2020). The neurocognitive basis of knowledge about object identity and events: Dissociations reflect opposing effects of semantic coherence and control. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 375(1791), 20190300. doi:10.1098/rstb.2019.0300
  • Kalénine, S., & Buxbaum, L. J. (2016). Thematic knowledge, artifact concepts, and the left posterior temporal lobe: Where action and object semantics converge. Cortex, 82, 164–178. 10.1016/j.cortex.2016.06.008
  • Kalénine, S., Mirman, D., & Buxbaum, L. J. (2012a). A combination of thematic and similarity-based semantic processes confers resistance to deficit following left hemisphere stroke. Frontiers in Human Neuroscience, 6, 106. doi:10.3389/fnhum.2012.00106
  • Kalénine, S., Mirman, D., Middleton, E. L., & Buxbaum, L. J. (2012b). Temporal dynamics of activation of thematic and functional knowledge during conceptual processing of manipulable artifacts. Journal of Experimental Psychology. Learning, Memory, and Cognition, 38(5), 1274–1295. doi:10.1037/a0027626
  • Kalénine, S., Peyrin, C., Pichat, C., Segebarth, C., Bonthoux, F., & Baciu, M. (2009). The sensory-motor specificity of taxonomic and thematic conceptual relations: A behavioral and fMRI study. NeuroImage, 44(3), 1152–1162. doi:10.1016/j.neuroimage.2008.09.043
  • Kotz, S. A., Cappa, S. F., von Cramon, D. Y., & Friederici, A. D. (2002). Modulation of the lexical-semantic network by auditory semantic priming: An event-related functional MRI study. NeuroImage, 17(4), 1761–1772. doi:10.1006/nimg.2002.1316
  • Kumle, L., Võ, M. L.-H., & Draschkow, D. (2021). Estimating power in (generalized) linear mixed models: An open introduction and tutorial in R. Behavior Research Methods, 53(6), 2528–2543. doi:10.3758/s13428-021-01546-0
  • Landin-Romero, R., Tan, R., Hodges, J. R., & Kumfor, F. (2016). An update on semantic dementia: Genetics, imaging, and pathology. Alzheimer’s Research & Therapy, 8(1), 52. doi:10.1186/s13195-016-0219-5
  • Lawson, R., Chang, F., & Wills, A. J. (2017). Free classification of large sets of everyday objects is more thematic than taxonomic. Acta Psychologica, 172, 26–40. doi:10.1016/j.actpsy.2016.11.001
  • Le Rhun, B., & Poulet-Coulibando, P. (2016). Level of education among the general population and among young people. In I. Kabla-Langlois (Ed.), Higher education & research in France, facts and figures - 50 indicators [online]. Paris. Ministère de l’Éducation nationale, de l’Enseignement supérieur et de la Recherche. Retrieved from https://publication.enseignementsup-recherche.gouv.fr/eesr/9EN/EESR9EN_ES_21-level_of_education_among_the_general_population_and_among_young_people.php
  • Lee, C., Middleton, E., Mirman, D., Kalénine, S., & Buxbaum, L. J. (2013). Incidental and context-responsive activation of structure- and function-based action features during object identification. Journal of Experimental Psychology. Human Perception and Performance, 39(1), 257–270. doi:10.1037/a0027533
  • Lee, C.-I., Mirman, D., & Buxbaum, L. J. (2014). Abnormal dynamics of activation of object use information in apraxia: Evidence from eyetracking. Neuropsychologia, 59, 13–26. doi:10.1016/j.neuropsychologia.2014.04.004
  • Lewis, G. A., Poeppel, D., & Murphy, G. L. (2015). The neural bases of taxonomic and thematic conceptual relations: An MEG study. Neuropsychologia, 68, 176–189. doi:10.1016/j.neuropsychologia.2015.01.011
  • Lin, E. L., & Murphy, G. L. (2001). Thematic relations in adults’ concepts. Journal of Experimental Psychology. General, 130(1), 3–28. doi:10.1037/0096-3445.130.1.3
  • Liu, F., Han, J., Zhang, L., & Li, F. (2019). Inductive reasoning differs between taxonomic and thematic contexts: electrophysiological evidence. Frontiers in Psychology, 10, 1702. doi:10.3389/fpsyg.2019.01702
  • Lyons, K. E., Kellas, G., & Martin, M. (1995). Inter- and intra-individual differences in semantic priming among young and older adults. Experimental Aging Research, 21(3), 221–237. doi:10.1080/03610739508253982
  • Mackinnon, A., & Mulligan, R. (2005). The estimation of premorbid intelligence levels in French speakers. L’Encephale, 31(1), 31–43. doi:10.1016/s0013-7006(05)82370-x
  • Maguire, M. J., Brier, M. R., & Ferree, T. C. (2010). EEG theta and alpha responses reveal qualitative differences in processing taxonomic versus thematic semantic relationships. Brain and Language, 114(1), 16–25. doi:10.1016/j.bandl.2010.03.005
  • Maintenant, C., Blaye, A., & Paour, J.-L. (2011). Semantic categorical flexibility and aging: Effect of semantic relations on maintenance and switching. Psychology and Aging, 26(2), 461–466. doi:10.1037/a0021686
  • Mattis, S. (1976). Mental status examination for organic mental syndrome in the elderly patient. In L. Bellak & T. Karasu (Eds.), Geriatric psychiatry: A handbook for psychiatrists and primary care physicians (pp. 77–121). New York: Grune and Stratton.
  • McRae, K., Cree, G. S., Seidenberg, M. S., & McNorgan, C. (2005). Semantic feature production norms for a large set of living and nonliving things. Behavior Research Methods, 37(4), 547–559. doi:10.3758/BF03192726
  • McRae, K., de Sa, V. R., & Seidenberg, M. S. (1997). On the nature and scope of featural representations of word meaning. Journal of Experimental Psychology. General, 126(2), 99–130. doi:10.1037/0096-3445.126.2.99
  • Medin, D., & Ortony, A. (1989). Psychological essentialism. In S. Vosniadou & A. Ortony (Eds.), Similarity and analogical reasoning (pp. 179–195). New York: Cambridge University Press.
  • Merck, C., Charnallet, A., Auriacombe, S., Belliard, S., Hahn-Barma, V., Kremin, H., … Siegwart, H. (2011). La batterie d’évaluation des connaissances sémantiques du GRECO (BECS-GRECO): Validation et données normatives. [The GRECO neuropsychological semantic battery (BECS GRECO): Validation and normative data]. Revue de Neuropsychologie, 3(4), 235–255. doi:10.3917/rne.034.0235
  • Merck, C., Jonin, P.-Y., Laisney, M., Vichard, H., & Belliard, S. (2014). When the zebra loses its stripes but is still in the Savannah: Results from a semantic priming paradigm in semantic dementia. Neuropsychologia, 53, 221–232. doi:10.1016/j.neuropsychologia.2013.11.024
  • Merck, C., Noël, A., Jamet, E., Robert, M., Hou, C., Salmon, A., … Kalénine, S. (2019). Identification of taxonomic and thematic relationships: Do the two semantic systems have the same status in semantic dementia? Journal of Clinical and Experimental Neuropsychology, 1–19. doi:10.1080/13803395.2019.1641186
  • Merck, C., Noël, A., Jamet, E., Robert, M., Salmon, A., Belliard, S., & Kalénine, S. (2020). Overreliance on thematic knowledge in semantic dementia: Evidence from an eye-tracking paradigm. Neuropsychology, 34(3), 331–349. doi:10.1037/neu0000616
  • Mirman, D. (2014). Growth curve analysis and visualization using R. Boca Raton, FL: Chapman and Hall/CRC Press.
  • Mirman, D., & Britt, A. E. (2014). What we talk about when we talk about access deficits. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369(1634), 20120388. doi:10.1098/rstb.2012.0388
  • Mirman, D., Dixon, J. A., & Magnuson, J. S. (2008). Statistical and computational models of the visual world paradigm: Growth curves and individual differences. Journal of Memory and Language, 59(4), 475–494. doi:10.1016/j.jml.2007.11.006
  • Mirman, D., & Graziano, K. M. (2012a). Damage to temporo-parietal cortex decreases incidental activation of thematic relations during spoken word comprehension. Neuropsychologia, 50(8), 1990–1997. doi:10.1016/j.neuropsychologia.2012.04.024
  • Mirman, D., & Graziano, K. M. (2012b). Individual differences in the strength of taxonomic versus thematic relations. Journal of Experimental Psychology. General, 141(4), 601–609. doi:10.1037/a0026451
  • Mirman, D., Landrigan, J.-F., & Britt, A. E. (2017). Taxonomic and thematic semantic systems. Psychological Bulletin, 143(5), 499–520. doi:10.1037/bul0000092
  • Mirman, D., & Magnuson, J. S. (2009). Dynamics of activation of semantically similar concepts during spoken word recognition. Memory & Cognition, 37(7), 1026–1039. doi:10.3758/MC.37.7.1026
  • Mirman, D., Yee, E., Blumstein, S. E., & Magnuson, J. S. (2011). Theories of spoken word recognition deficits in aphasia: Evidence from eye-tracking and computational modeling. Brain and Language, 117(2), 53–68. doi:10.1016/j.bandl.2011.01.004
  • Moss, H. E., Tyler, L. K., Patterson, K., & Hodges, J. R. (1995). Exploring the loss of semantic memory in semantic dementia: Evidence from a primed monitoring study. Neuropsychology, 9(1), 16–26. doi:10.1037/0894-4105.9.1.16
  • Myerson, J., Hale, S., Chen, J., & Lawrence, B. (1997). General lexical slowing and the semantic priming effect: The roles of age and ability. Acta Psychologica, 96(1–2), 83–101. doi:10.1016/s0001-6918(97)00002-4
  • Neary, D., Snowden, J. S., Gustafson, L., Passant, U., Stuss, D., Black, S., … Benson, D. F. (1998). Frontotemporal lobar degeneration: A consensus on clinical diagnostic criteria. Neurology, 51(6), 1546–1554. doi:10.1212/WNL.51.6.1546
  • New, B., Pallier, C., Brysbaert, M., & Ferrand, L. (2004). Lexique 2: A new French lexical database. Behavior Research Methods, Instruments and Computers, 36(3), 516–524. doi:10.3758/BF03195598
  • Ober, B. A. (2002). RT and non-RT methodology for semantic priming research with alzheimer’s disease patients: a critical review. Journal of Clinical and Experimental Neuropsychology, 24(7), 883–911. doi:10.1076/jcen.24.7.883.8384
  • Pedraza, O., Lucas, J. A., Smith, G. E., Petersen, R. C., Graff-Radford, N. R., & Ivnik, R. J. (2010). Robust and expanded norms for the dementia rating scale. Archives of Clinical Neuropsychology, 25(5), 347–358. doi:10.1093/arclin/acq030
  • Pluciennicka, E., Wamain, Y., Coello, Y., & Kalénine, S. (2016). Impact of action primes on implicit processing of thematic and functional similarity relations: Evidence from eye-tracking. Psychological Research, 80(4), 566–580. doi:10.1007/s00426-015-0674-9
  • Raven, J., Raven, J., C, & Court, J. H. (1998). Manual for raven’s progressive matrices and vocabulary scales. section 5: the mill hill vocabulary scale. Oxford: Oxford Psychologists Press/San Antonio, TX: The Psychological Corporation.
  • Reilly, J., Flurie, M., & Ungrady, M. B. (2020). Eyetracking during picture naming predicts future vocabulary dropout in progressive anomia. Neuropsychological Rehabilitation, 1–19. doi:10.1080/09602011.2020.1835676
  • Rossion, B., & Pourtois, G. (2004). Revisiting snodgrass and vanderwart’s object pictorial set: The role of surface detail in basic-level object recognition. Perception, 33(2), 217–236. doi:10.1068/p5117
  • Ruotolo, F., Kalénine, S., & Bartolo, A. (2019). Activation of manipulation and function knowledge during visual search for objects. Journal of Experimental Psychology. Human Perception and Performance, 46(1), 66–90. doi:10.1037/xhp0000696
  • Sachs, O., Weis, S., Zellagui, N., Huber, W., Zvyagintsev, M., Mathiak, K., & Kircher, T. (2008). Automatic processing of semantic relations in fMRI: Neural activation during semantic priming of taxonomic and thematic categories. Brain Research, 1218, 194–205. doi:10.1016/j.brainres.2008.03.045
  • Salthouse, T. A. (1991). Mediation of adult age differences in cognition by reductions in working memory and speed of processing. Psychological Science, 2(3), 179–183. doi:10.1111/j.1467-9280.1991.tb00127.x
  • Salthouse, T. A. (1993). Speed mediation of adult age differences in cognition. Developmental Psychology, 29(4), 722–738. doi:10.1037/0012-1649.29.4.722
  • Salthouse, T. A. (1996). The processing-speed theory of adult age differences in cognition. Psychological Review, 103(3), 403–428. doi:10.1037/0033-295x.103.3.403
  • Sass, K., Sachs, O., Krach, S., & Kircher, T. (2009). Taxonomic and thematic categories: Neural correlates of categorization in an auditory-to-visual priming task using fMRI. Brain Research, 1270, 78–87. doi:10.1016/j.brainres.2009.03.013
  • Savic, O., Savic, A. M., & Kovic, V. (2017). Comparing the temporal dynamics of thematic and taxonomic processing using event-related potentials. PloS One, 12(12), e0189362. doi:10.1371/journal.pone.0189362
  • Schwartz, M. F., Kimberg, D. Y., Walker, G. M., Brecher, A., Faseyitan, O. K., Dell, G. S., Coslett, H. B. (2011). Neuroanatomical dissociation for taxonomic and thematic knowledge in the human brain. Proceedings of the National Academy of Sciences of the United States of America, 108(20), 8520–8524. doi:10.1073/pnas.1014935108
  • Seckin, M., Mesulam, -M.-M., Voss, J. L., Huang, W., Rogalski, E. J., & Hurley, R. S. (2016). Am I looking at a cat or a dog? Gaze in the semantic variant of primary progressive aphasia is subject to excessive taxonomic capture. Journal of Neurolinguistics, 37, 68–81. doi:10.1016/j.jneuroling.2015.09.003
  • Seferlis, F., Chimona, T. S., Papadakis, C. E., Bizakis, J., Triaridis, S., & Skoulakis, C. (2015). Age related changes in ocular motor testing in healthy subjects. Journal of Vestibular Research: Equilibrium & Orientation, 25(2), 57–66. doi:10.3233/VES-150548
  • Smiley, S. S., & Brown, A. L. (1979). Conceptual preference for thematic or taxonomic relations: A nonmonotonic age trend from preschool to old age. Journal of Experimental Child Psychology, 28, 249–257.
  • Snowden, J. S., Goulding, P. J., & Neary, D. (1989). Semantic dementia: A form of circumscribed cerebral atrophy. Behavioural Neurology, 2, 167–182.
  • Thompson, H., Davey, J., Hoffman, P., Hallam, G., Kosinski, R., Howkins, S., Jefferies, E. (2017). Semantic control deficits impair understanding of thematic relationships more than object identity. Neuropsychologia, 104, 113–125. doi:10.1016/j.neuropsychologia.2017.08.013
  • Walenski, M., Mack, J. E., Mesulam, M. M., & Thompson, C. K. (2020). Thematic Integration Impairments in Primary Progressive Aphasia: Evidence From Eye-Tracking. Frontiers in Human Neuroscience, 14, 587594. doi:10.3389/fnhum.2020.587594
  • Walther, D., & Koch, C. (2006). Modeling attention to salient proto-objects. Neural Networks: The Official Journal of the International Neural Network Society, 19(9), 1395–1407. doi:10.1016/j.neunet.2006.10.001
  • Warrington, E. K., & Cipolotti, L. (1996). Word comprehension. The distinction between refractory and storage impairments. Brain, 119(2), 611–625. doi:10.1093/brain/119.2.611
  • Warrington, E. K., & Shallice, T. (1979). Semantic access dyslexia. Brain, 102(1), 43–63. doi:10.1093/brain/102.1.43
  • Xu, P., Qu, Q., Shen, W., & Li, X. (2019). Co-activation of taxonomic and thematic relations in spoken word comprehension: evidence from eye movements. Frontiers in Psychology, 10, 964. doi:10.3389/fpsyg.2019.00964
  • Xu, Y., Wang, X., Wang, X., Men, W., Gao, J.-H., & Bi, Y. (2018). Doctor, teacher, and stethoscope: neural representation of different types of semantic relations. The Journal of Neuroscience, 38(13), 3303–3317. doi:10.1523/JNEUROSCI.2562-17.2018
  • Yee, E., Overton, E., & Thompson-Schill, S. L. (2009). Looking for meaning: Eye movements are sensitive to overlapping semantic features, not association. Psychonomic Bulletin & Review, 16(5), 869–874. doi:10.3758/PBR.16.5.869
  • Zhang, L., Zhang, L., Mou, X., & Zhang, D. (2011). FSIM: A feature similarity index for image quality assessment. IEEE Trans. Image Processing, 20(8), 2378–2386.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.