38
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

An investigation of a quadratic design criterion for estimation of the hemodynamic response function

Pages 2945-2956 | Received 15 Aug 2014, Accepted 01 Jul 2015, Published online: 18 Dec 2016

References

  • Aguirre, G., Zarahn, E., and D’esposito, M. (1998). The variability of human, BOLD hemodynamic responses. Neuroimage 8:360–369.
  • Bates, D. M., Watts, D. G. (1980). Relative curvature measures of nonlinearity. Journal of the Royal Statistical Society, Series B 42:1–25.
  • Bates, D. M., Watts, D. G. (1988). Nonlinear Regression Analysis and Its Applications. New York: John Wiley & Sons, Inc.
  • Bazargani, N., Nosratinia, A. (2014). Joint maximum likelihood estimation of activation and Hemodynamic Response Function for fMRI. Medical Image Analysis 18:711–724.
  • Bellgowan, P., Saad, Z., Bandettini, P. (2003). Understanding neural system dynamics through task modulation and measurement of functional MRI amplitude, latency, and width. Proceedings of the National Academy of Sciences 100:1415–1419.
  • Birn, R. M., Cox, R. W., Bandettini, P. A. (2002). Detection versus estimation in event-related fMRI: Choosing the optimal stimulus timing. Neuroimage 15:252–264.
  • Biswal, B., Zerrin Yetkin, F., Haughton, V. M., Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine 34:537–541.
  • Box, G. E., Lucas, H. (1959). Design of experiments in non-linear situations. Biometrika 47:77–90.
  • Boynton, G. M., Engel, S. A., Glover, G. H., Heeger, D. J. (1996). Linear systems analysis of functional magnetic resonance imaging in human V1. The Journal of Neuroscience 16:4207–4221.
  • Buračas, G. T., Boynton, G. M. (2002). Efficient design of event-related fMRI experiments using M-sequences. Neuroimage 16:801–813.
  • Buxton, R. B. (2009). Introduction to Functional Magnetic Resonance Imaging: Principles and Techniques. Cambridge: Cambridge University Press.
  • Buxton, R. B., Uludağ, K., Dubowitz, D. J., Liu, T. T. (2004). Modeling the hemodynamic response to brain activation. Neuroimage 23:S220–S233.
  • Clarke, G. (1980). Moments of the least squares estimators in a non-linear regression model. Journal of the Royal Statistical Society, Series B 42:227–237.
  • Daimon, T., Goto, M. (2008). The mean squared error optimum design criterion for parameter estimation in nonlinear regression models. Communications in Statistics - Theory and Methods 37:508–519.
  • Dale, A. M., Buckner, R. L. (1997). Selective averaging of rapidly presented individual trials using fMRI. Human Brain Mapping 5:329–340.
  • Degras, D., Lindquist, M. A. (2014). A hierarchical model for simultaneous detection and estimation in multi-subject fMRI studies. NeuroImage 98:61–72.
  • Delzell, D. A., Gunst, R. F., Schucany, W. R., Carmack, P. S., Lin, Q., Spence, J. S., Haley, R. W. (2012). Key properties of D-optimal designs for event-related functional MRI experiments with application to nonlinear models. Statistics in Medicine 31:3907–3920.
  • Frackowiak, R. S., Friston, K. J., Frith, C. D., Dolan, R. J., Price, C. J., Zeki, S., Ashburner, J. T., Penny, W. D. (2004). Human Brain Function. Amsterdam:Elsevier Academic Press.
  • Friston, K. J., Fletcher, P., Josephs, O., Holmes, A., Rugg, M., Turner, R. (1998). Event-Related fMRI: Characterizing Differential Responses. Neuroimage 7:30–40.
  • Friston, K. J., Glaser, D. E., Henson, R. N., Kiebel, S., Phillips, C., Ashburner, J. (2002). Classical and Bayesian inference in neuroimaging: Applications. Neuroimage 16:484–512.
  • Friston, K. J., Zarahn, E., Josephs, O., Henson, R., Dale, A. M. (1999). Stochastic designs in event-related fMRI. Neuroimage 10:607–619.
  • Genovese, C. R. (2000). A Bayesian time-course model for functional magnetic resonance imaging data. Journal of the American Statistical Association 95:691–703.
  • Goutte, C., Nielsen, F. A., Hansen, L. K. (2000). Modeling the hemodynamic response in fMRI using smooth FIR filters. IEEE Transactions on Medical Imaging 19:1188–1201.
  • Handwerker, D. A., Ollinger, J. M., D’Esposito, M. (2004). Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses. Neuroimage 21:1639–1651.
  • Henson, R., Friston, K. (2007). Convolution models for fMRI. In:William Penny., Karl Friston., John Ashburner., Stefan Kiebel., Thomas Nichols. Statistical Parametrical Mapping. Amsterdam: Elsevier Academic Press, 178–192.
  • Kao, M.-H., Majumdar, D., Mandal, A., Stufken, J. (2013). Maximin and maximin-efficient event-related fMRI designs under a nonlinear model. The Annals of Applied Statistics 7:1940–1959.
  • Kao, M.-H., Mandal, A., Lazar, N., Stufken, J. (2009). Multi-objective optimal experimental designs for event-related fMRI studies. NeuroImage 44:849–856.
  • Kruggel, F., Von Cramon, D. (1999). Temporal properties of the hemodynamic response in functional MRI. Human Brain Mapping 8:259–271.
  • Lindquist, M. A., Wager, T. D. (2007). Validity and power in hemodynamic response modeling: A comparison study and a new approach. Human Brain Mapping 28:764–784.
  • Maus, B., van Breukelen, G. J. (2013). Optimal design for functional magnetic resonance imaging experiments: Methodology, challenges, and future perspectives. Zeitschrift für Psychologie 189:221:174.
  • Maus, B., van Breukelen, G. J., Goebel, R., Berger, M. P. (2012). Optimal design for nonlinear estimation of the hemodynamic response function. Human Brain Mapping 33:1253–1267.
  • Miezin, F. M., Maccotta, L., Ollinger, J., Petersen, S., Buckner, R. (2000). Characterizing the hemodynamic response: effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing. Neuroimage 11:735–759.
  • Proulx, S., Safi-Harb, M., LeVan, P., An, D., Watanabe, S., Gotman, J. (2014). Increased sensitivity of fast BOLD fMRI with a subject-specific hemodynamic response function and application to epilepsy. NeuroImage 93:59–73.
  • Purdon, P. L., Weisskoff, R. M. (1998). Effect of temporal autocorrelation due to physiological noise and stimulus paradigm on voxel-level false-positive rates in fMRI. Human Brain Mapping 6:239–249.
  • R Core Team, (2014). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
  • Rosen, B. R., Buckner, R. L., Dale, A. M. (1998). Event-related functional MRI: Past, present, and future. Proceedings of the National Academy of Sciences 95:773–780.
  • Seber, G., Wild, C. (2003). Nonlinear Regression (Wiley Series in Probability and Statistics). New York: Wiley-Interscience.
  • Shan, Z. Y., Wright, M. J., Thompson, P. M., McMahon, K. L., Blokland, G. G., de Zubicaray, G. I., Martin, N. G., Vinkhuyzen, A. A., Reutens, D. C. (2013). Modeling of the hemodynamic responses in block design fMRI studies. Journal of Cerebral Blood Flow & Metabolism 34(2):316–324.
  • Smith, S. M., Matthews, P. M., Jezzard, P. (2001). Functional MRI: An Introduction to Methods. Oxford: Oxford University Press.
  • Wager, T. D., Nichols, T. E. (2003). Optimization of experimental design in fMRI: A general framework using a genetic algorithm. Neuroimage 18:293–309.
  • Worsley, K. J., Liao, C., Aston, J., Petre, V., Duncan, G., Morales, F., Evans, A. (2002). A general statistical analysis for fMRI data. Neuroimage 15:1–15.
  • Zarahn, E., Aguirre, G. K., D’Esposito, M. (1997). Empirical analyses of BOLD fMRI statistics. NeuroImage 5:179–197.
  • Zhang, T., Li, F., Gonzalez, M. Z., Maresh, E. L., Coan, J. A. (2014). A semi-parametric nonlinear model for event-related fMRI. NeuroImage 97:178–187.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.