641
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

On the application of statistical learning approaches to construct inverse probability weights in marginal structural Cox models: Hedging against weight-model misspecification

ORCID Icon, , ORCID Icon, &
Pages 7668-7697 | Received 13 Jun 2016, Accepted 03 Oct 2016, Published online: 11 May 2017

References

  • Ali, R., Ali, M., Wei, Z. (2014). On computing standard errors for marginal structural Cox models. Lifetime Data Analysis, 20(1):106–131.
  • Au, T., Chin, M., Ma, G. (2010). Mining rare events data by sampling and boosting: A case study. In International Conference on Information Systems, Technology and Management, pp. 373–379. New York: Springer.
  • Austin, P. (2011). An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivariate Behavioral Research, 46(3):399–424.
  • Bembom, O., van der Laan, M. (2008). Data-adaptive selection of the truncation level for inverse-probability-of-treatment-weighted estimators. Technical Report, Last accessed: July 20, 2014. Available at: http://biostats.bepress.com/ucbbiostat/paper230/
  • Binder, D. (1992). Fitting Cox’s proportional hazards models from survey data. Biometrika, 79(1):139–147.
  • Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2):123–140.
  • Breiman, L. (1998). Arcing classifier (with discussion and a rejoinder by the author). The Annals of Statistics, 26(3):801–849.
  • Brumback, B., Hernán, M., Haneuse, S., Robins, J. (2004). Sensitivity analyses for unmeasured confounding assuming a marginal structural model for repeated measures. Statistics in Medicine, 23(5):749–767.
  • Bryan, J., Yu, Z., van der Laan, M. (2004). Analysis of longitudinal marginal structural models. Biostatistics, 5(3):361–380.
  • Chang, C., Lin, C. (2011). LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2(3):1–27.
  • Coffman, D., Zhong, W. (2012). Assessing mediation using marginal structural models in the presence of confounding and moderation. Psychological Methods, 17(4):642–664.
  • Cole, S., Hernán, M. (2008). Constructing inverse probability weights for marginal structural models. American Journal of Epidemiology, 168(6):656–664.
  • Ebers, G.C., PRISMS study group, (1998). Randomised double-blind placebo-controlled study of interferon beta-1a in relapsing/remitting multiple sclerosis. The Lancet, 352(9139):1498–1504.
  • Efron, B., Tibshirani, R. (1994). An Introduction to the Bootstrap. Boca Raton, FL: CRC press.
  • Fan, R., Chen, P., Lin, C. (2005). Working set selection using second order information for training support vector machines. The Journal of Machine Learning Research, 6:1889–1918.
  • Fewell, Z., Hernán, M., Wolfe, F., Tilling, K., Choi, H., Sterne, J. (2004). Controlling for time-dependent confounding using marginal structural models. The Stata Journal, 4(4):402–420.
  • Fong, C., Imai, K. (2014). Covariate balancing propensity score for general treatment regimes. Technical Report, Last accessed: Sept 20, 2014. Available at: http://imai.princeton.edu/research/CBGPS.html
  • Freedman, M., the OWIMS Study Group, (1999). Evidence of interferon beta-1a dose response in relapsing–remitting MS: the OWIMS Study. Neurology, 53(4):679–686.
  • Friedman, J., Hastie, T., Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1):1.
  • Gran, J., Røysland, K., Wolbers, M., Didelez, V., Sterne, J., Ledergerber, B., Furrer, H., von Wyl, V., Aalen, O. (2010). A sequential Cox approach for estimating the causal effect of treatment in the presence of time-dependent confounding applied to data from the Swiss HIV Cohort Study. Statistics in Medicine, 29(26):2757–2768.
  • Gruber, S., Logan, R., Jarrín, I., Monge, S., Hernán, M. (2015). Ensemble learning of inverse probability weights for marginal structural modeling in large observational datasets. Statistics in Medicine, 34(1):106–117.
  • Guo, S., Fraser, M. W. (2015). Propensity score analysis: Statistical methods and applications. 2nd edition. Los Angeles: Sage Publications.
  • Havercroft, W., Didelez, V. (2012). Simulating from marginal structural models with time-dependent confounding. Statistics in Medicine, 31(30):4190–4206.
  • Hernán, M., Brumback, B., Robins, J. (2000). Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men. Epidemiology, 11(5):561–570.
  • Hernán, M., Brumback, B., Robins, J. (2001). Marginal structural models to estimate the joint causal effect of nonrandomized treatments. Journal of the American Statistical Association, 96(454):440–448.
  • Hernán, M., Robins, J. (2006). Estimating causal effects from epidemiological data. Journal of Epidemiology and Community Health, 60(7):578–586.
  • Hesler, B., Dalton, J., Singh, H., Chahar, P., Saager, L., Sessler, D., and Turan, A. (2014). Association between fibromyalgia and adverse perioperative outcomes. British Journal of Anaesthesiaaeu164.
  • Imai, K., Ratkovic, M. (2014). Robust estimation of inverse probability weights for marginal structural models. Technical Report, Last accessed: July 20, 2014. Available at: http://imai.princeton.edu/research/MSM.html
  • INFB Multiple Sclerosis Study Group, (1993). Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology, 43(4):655–661.
  • INFB Multiple Sclerosis Study Group and University of British Columbia MS/MRI Analysis Group (1995). Interferon beta-1b in the treatment of multiple sclerosis: Final outcome of the randomized controlled trial. Neurology, 45(7):1277–1285.
  • Jacobs, L., Cookfair, D., Rudick, R., Herndon, R., Richert, J., Salazar, A., Fischer, J., Goodkin, D., Granger, C., Simon, J., et al. (1996). Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis. Annals of Neurology, 39(3):285–294.
  • James, G., Witten, D., Hastie, T., Tibshirani, R. (2013). An introduction to Statistical Learning. New York: Springer.
  • Kang, J., Schafer, J. L. (2007). Demystifying double robustness: A comparison of alternative strategies for estimating a population mean from incomplete data. Statistical Science, 22(4):523–539.
  • Karim, M., Gustafson, P., Petkau, J., Tremlett, H., BeAMS, (2016a). Comparison of statistical approaches for dealing with immortal time bias in drug effectiveness studies. American Journal of Epidemiology, 184(4):325–335.
  • Karim, M., Petkau, J., Gustafson, P., Platt, R., Tremlett, H., BeAMS, (2016b). Comparison of statistical approaches dealing with time-dependent confounding in drug effectiveness studies. Statistical Methods in Medical Research. DOI: 10.1177/0962280216668554 (published online: September 21). Available at: http://smm.sagepub.com/content/early/2016/09/21/0962280216668554
  • Karim, M., Platt, R., BeAMS. (2017). Estimating inverse probability weights using super learner when weight-model specification is unknown in a marginal structural Cox model context. DOI: 10.1002/sim.7266. Available at: http://onlinelibrary.wiley.com/wol1/doi/10.1002/sim.7266/abstract
  • Karim, M. E. (2015). Causal Inference Approaches for Dealing with Time-Dependent Confounding in Longitudinal Studies, with Applications to Multiple Sclerosis Research. PhD thesis, Vancouver: University of British Columbia.
  • Karim, M. E., Gustafson, P., Petkau, J., Zhao, Y., Shirani, A., Kingwell, E., Evans, C., van der Kop, M., Oger, J., Tremlett, H. (2014). Marginal structural Cox models for estimating the association between β-Interferon exposure and disease progression in a multiple sclerosis cohort. American Journal of Epidemiology, 180(2):160–171.
  • Keller, B., Kim, J., Steiner, P. (2013). Data mining alternatives to logistic regression for propensity score estimation: Neural networks and support vector machines. Multivariate Behavioral Research, 48(1):164–164.
  • King, G., Zeng, L. (2001). Explaining rare events in international relations. International Organization, 55(03):693–715.
  • Kreif, N., Gruber, S., Radice, R., Grieve, R., Sekhon, J. (2014). Evaluating treatment effectiveness under model misspecification: A comparison of targeted maximum likelihood estimation with bias-corrected matching. Statistical Methods in Medical Research, 0962280214521341.
  • Kruppa, J., Liu, Y., Biau, G., Kohler, M., König, I., Malley, J., Ziegler, A. (2014). Probability estimation with machine learning methods for dichotomous and multicategory outcome: Theory. Biometrical Journal, 56(4):534–563.
  • Kuhn, M., Johnson, K. (2013). Applied Predictive Modeling. New York: Springer.
  • Kurtzke, J. (1983). Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS). Neurology, 33(11):1444–1452.
  • Lee, B., Lessler, J., Stuart, E. (2010). Improving propensity score weighting using machine learning. Statistics in Medicine, 29(3):337–346.
  • Lee, B., Lessler, J., Stuart, E. (2011). Weight trimming and propensity score weighting. PLoS one, 6(3):e18174.
  • Lefebvre, G., Delaney, J., Platt, R. (2008). Impact of mis-specification of the treatment model on estimates from a marginal structural model. Statistics in Medicine, 27(18):3629–3642.
  • Li, L., Shen, C., Wu, A., Li, X. (2011). Propensity score-based sensitivity analysis method for uncontrolled confounding. American Journal of Epidemiology, 174(3):345–353.
  • Lin, D., Wei, L. (1989). The robust inference for the Cox proportional hazards model. Journal of the American Statistical Association, 84(408):1074–1078.
  • McCaffrey, D., Ridgeway, G., Morral, A. (2004). Propensity score estimation with boosted regression for evaluating causal effects in observational studies. Psychological Methods, 9(4):403–425.
  • Moodie, E., Stephens, D., Klein, M. (2014). A marginal structural model for multiple-outcome survival data: Assessing the impact of injection drug use on several causes of death in the canadian co-infection cohort. Statistics in Medicine, 33(8):1409–1425.
  • Mortimer, K., Neugebauer, R., Van der Laan, M., Tager, I. (2005). An application of model-fitting procedures for marginal structural models. American Journal of Epidemiology, 162(4):382–388.
  • Multiple Sclerosis International Federation, (2014). Atlas of MS Database. Available at: http://www.atlasofms.org/, last accessed: 15 May 2014.
  • Neugebauer, R., Chandra, M., Paredes, A., J Graham, D., McCloskey, C., and S Go, A. (2013a). A marginal structural modeling approach with super learning for a study on oral bisphosphonate therapy and atrial fibrillation. Journal of Causal Inference, 1(1):21–50.
  • Neugebauer, R., Fireman, B., Roy, J., Raebel, M., Nichols, G., O’Connor, P. (2013b). Super learning to hedge against incorrect inference from arbitrary parametric assumptions in marginal structural modeling. Journal of Clinical Epidemiology, 66(8):S99–S109.
  • Neugebauer, R., Schmittdiel, J., Zhu, Z., Rassen, J., Seeger, J., Schneeweiss, S. (2014). High-dimensional propensity score algorithm in comparative effectiveness research with time-varying interventions. Statistics in Medicine, 34(5):753–781.
  • Niculescu-Mizil, A., Caruana, R. (2005). Predicting good probabilities with supervised learning. In Proceedings of the 22nd International Conference on Machine Learning, Germany:Bonn, pp. 625–632. ACM.
  • Pearl, J. (2009). Causality. Cambridge: Cambridge University Press.
  • Pirracchio, R., Petersen, M., van der Laan, M. (2015). Improving propensity score estimators’ robustness to model misspecification using super learner. American Journal of Epidemiology, 181(2):108–119.
  • Platt, J. (1999). Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Advances in Large Margin Classifiers, 10(3):61–74.
  • Regier, M., Moodie, E., Platt, R. (2014). The effect of error-in-confounders on the estimation of the causal parameter when using marginal structural models and inverse probability-of-treatment weights: A simulation study. The International Journal of Biostatistics, 10(1):1–15.
  • Ridgeway, G. (1999). The state of boosting. Computing Science and Statistics172–181.
  • Robins, J., Hernán, M. (2009). Estimation of the Causal Effects of Time-Varying Exposures. Longitudinal Data Analysis, Boca Raton, FL: CRC Press, pp. 553–599.
  • Robins, J., Hernán, M., Brumback, B. (2000). Marginal structural models and causal inference in epidemiology. Epidemiology, 11(5):550–560.
  • Rosenbaum, P., Rubin, D. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika, 70(1):41–55.
  • Shirani, A., Zhao, Y., Karim, M., Evans, C., Kingwell, E., van der Kop, M., Oger, J., Gustafson, P., Petkau, J., Tremlett, H. (2012). Association between use of interferon beta and progression of disability in patients with relapsing-remitting multiple sclerosis. Journal of American Medical Association, 308(3):247–256.
  • Shirani, A., Zhao, Y., Karim, M., Evans, C., Kingwell, E., van der Kop, M., Oger, J., Gustafson, P., Petkau, J., Tremlett, H. (2013). Interferon beta and long-term disability in multiple sclerosis. JAMA Neurology, 70(5):651–653.
  • Shirani, A., Zhao, Y., Karim, M., Evans, C., Kingwell, E., van der Kop, M., Oger, J., Gustafson, P., Petkau, J., Tremlett, H. (2014). Investigation of heterogeneity in the association between interferon beta and disability progression in multiple sclerosis: An observational study. European Journal of Neurology, 21(6):835–844.
  • Tremlett, H., Paty, D., Devonshire, V. (2006). Disability progression in multiple sclerosis is slower than previously reported. Neurology, 66(2):172–177.
  • Tremlett, H., Yousefi, M., Devonshire, V., Rieckmann, P., Zhao, Y. (2009). Impact of multiple sclerosis relapses on progression diminishes with time. Neurology, 73(20):1616–1623.
  • Vourli, G., Touloumi, G. (2015). Performance of the marginal structural models under various scenarios of incomplete marker’s values: A simulation study. Biometrical Journal, 57(2):254–270.
  • Wang, J., Shen, X., Liu, Y. (2008). Probability estimation for large-margin classifiers. Biometrika, 95(1):149–167.
  • Wang, Y., Petersen, M., Bangsberg, D., van der Laan, M. (2006). Diagnosing bias in the inverse probability of treatment weighted estimator resulting from violation of experimental treatment assignment. Technical Report, Last accessed: July 20, 2014. Available at: http://biostats.bepress.com/ucbbiostat/paper211/
  • Watkins, S., Jonsson-Funk, M., Brookhart, M., Rosenberg, S., O’Shea, T., and Daniels, J. (2013). An empirical comparison of tree-based methods for propensity score estimation. Health Services Research, 48(5):1798–1817.
  • Westreich, D., Cole, S., Schisterman, E., Platt, R. (2012). A simulation study of finite-sample properties of marginal structural Cox proportional hazards models. Statistics in Medicine, 31(19):2098–2109.
  • Westreich, D., Lessler, J., Funk, M. (2010). Propensity score estimation: Machine learning and classification methods as alternatives to logistic regression. Journal of Clinical Epidemiology, 63(8):826.
  • Wyss, R., Ellis, A., Brookhart, M., Girman, C., Funk, M., LoCasale, R., Stürmer, T. (2014). The role of prediction modeling in propensity score estimation: An evaluation of logistic regression, bcart, and the covariate-balancing propensity score. American Journal of Epidemiology, 180(6):645–655.
  • Xiao, Y., Abrahamowicz, M., Moodie, E. (2010). Accuracy of conventional and marginal structural Cox model estimators: A simulation study. The International Journal of Biostatistics, 6(2):1–28.
  • Xiao, Y., Abrahamowicz, M., Moodie, E., Weber, R., Young, J. (2014). Flexible marginal structural models for estimating the cumulative effect of a time-dependent treatment on the hazard: Reassessing the cardiovascular risks of didanosine treatment in the swiss HIV cohort study. Journal of the American Statistical Association, 109(506):455–464.
  • Xiao, Y., Moodie, E., Abrahamowicz, M. (2012). Comparison of approaches to weight truncation for marginal structural Cox models. Epidemiologic Methods, 2(1):1–20.
  • Yap, B., Rani, K., Rahman, H., Fong, S., Khairudin, Z., Abdullah, N. (2014). An application of oversampling, undersampling, bagging and boosting in handling imbalanced datasets. In Proceedings of the First International Conference on Advanced Data and Information Engineering (DaEng-2013), New York: Springer, pp. 13–22.
  • Young, J., Hernán, M., Picciotto, S., Robins, J. (2008). Simulation from structural survival models under complex time-varying data structures. In JSM Proceedings, Section on Statistics in Epidemiology, American Statistical Association, pp. 1–6.
  • Young, J., Hernán, M., Picciotto, S., Robins, J. (2010). Relation between three classes of structural models for the effect of a time-varying exposure on survival. Lifetime Data Analysis, 16(1):71–84.
  • Young, J., Tchetgen Tchetgen, E. (2014). Simulation from a known Cox MSM using standard parametric models for the g-formula. Statistics in Medicine, 33(6):1001–1014.
  • Zhang, T., Shirani, A., Zhao, Y., Karim, M., Gustafson, P., Petkau, J., Evans, C., Kingwell, E., Kop, M., Zhu, F., Oger, J., Tremlett, H. (2015). Beta-interferon exposure and onset of secondary progressive multiple sclerosis. European Journal of Neurology, 22(6):990–1000.
  • Zhu, J., Hastie, T. (2001). Kernel logistic regression and the import vector machine. In Advances in Neural Information Processing Systems, pp. 1081–1088.
  • Zhu, Y., Ghosh, D., Mitra, N., Mukherjee, B. (2014). A data-adaptive strategy for inverse weighted estimation of causal effects. Health Services and Outcomes Research Methodology, 14(3):69–91.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.