426
Views
1
CrossRef citations to date
0
Altmetric
Articles

Robust estimation of heterogeneous treatment effects: an algorithm-based approach

, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 4981-4998 | Received 19 May 2021, Accepted 23 Aug 2021, Published online: 14 Sep 2021

References

  • All of Us Research Program Investigators. 2019. The “all of us” research program. New England Journal of Medicine 381 (7):668–76.
  • Athey, S., and G. Imbens. 2016. Recursive partitioning for heterogeneous causal effects. Proceedings of the National Academy of Sciences of the United States of America 113 (27):7353–60. doi:10.1073/pnas.1510489113.
  • Athey, S., J. Tibshirani, and S. Wager. 2019. Generalized random forests. The Annals of Statistics 47 (2):1148–78. doi:10.1214/18-AOS1709.
  • Biau, G. 2012. Analysis of a random forests model. The Journal of Machine Learning Research 13 (1):1063–95.
  • Breiman, L. 2001. Random forests. Machine Learning 45 (1):5–32. doi:10.1023/A:1010933404324.
  • Breiman, L., J. Friedman, C. J. Stone, and R. A. Olshen. 1984. Classification and regression trees. Boca Raton, FL: CRC Press.
  • Caron, A., I. Manolopoulou, and G. Baio. 2020. Estimating individual treatment effects using non-parametric regression models: A review. arXiv preprint, arXiv:2009.06472.
  • Chen, S., L. Tian, T. Cai, and M. Yu. 2017. A general statistical framework for subgroup identification and comparative treatment scoring. Biometrics 73 (4):1199–209. doi:10.1111/biom.12676.
  • Duarte, J. D., and R. M. Cooper-DeHoff. 2010. Mechanisms for blood pressure lowering and metabolic effects of thiazide and thiazide-like diuretics. Expert Review of Cardiovascular Therapy 8 (6):793–802. doi:10.1586/erc.10.27.
  • El-Melegy, M. T., M. H. Essai, and A. A. Ali. 2009. Robust training of artificial feedforward neural networks. In Foundations of computational, intelligence, vol. 1, 217–42. New York, NY: Springer.
  • Feng, J., and N. Simon. 2017. Sparse-input neural networks for high-dimensional nonparametric regression and classification. arXiv preprint, arXiv:1711.07592.
  • Friedman, J., T. Hastie, and R. Tibshirani. 2000. Additive logistic regression: A statistical view of boosting (with discussion and a rejoinder by the authors). The Annals of Statistics 28 (2):337–407. doi:10.1214/aos/1016218223.
  • Friedman, J. H. 2001. Greedy function approximation: A gradient boosting machine. Annals of Statistics 29 (5):1189–232.
  • Friedman, J. H. 2002. Stochastic gradient boosting. Computational Statistics & Data Analysis 38 (4):367–78. doi:10.1016/S0167-9473(01)00065-2.
  • Girosi, F., M. Jones, and T. Poggio. 1995. Regularization theory and neural networks architectures. Neural Computation 7 (2):219–69. doi:10.1162/neco.1995.7.2.219.
  • Goodfellow, I., Y. Bengio, A. Courville, and Y. Bengio. 2016. Deep learning, Volume 1. Cambridge, MA: MIT Press.
  • Hastie, T., R. Tibshirani, and J. Friedman. 2009. The elements of statistical learning: Data mining, inference, and prediction. New York, NY: Springer Science & Business Media.
  • Heinze-Deml, C., J. Peters, and N. Meinshausen. 2018. Invariant causal prediction for nonlinear models. Journal of Causal Inference 6 (2). doi:10.1515/jci-2017-0016.
  • Hirano, K., G. W. Imbens, and G. Ridder. 2003. Efficient estimation of average treatment effects using the estimated propensity score. Econometrica 71 (4):1161–89. doi:10.1111/1468-0262.00442.
  • Horvitz, D. G., and D. J. Thompson. 1952. A generalization of sampling without replacement from a finite universe. Journal of the American Statistical Association 47 (260):663–85. doi:10.1080/01621459.1952.10483446.
  • Kingma, D. P., and J. Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint, arXiv:1412.6980.
  • Künzel, S. R., J. S. Sekhon, P. J. Bickel, and B. Yu. 2019. Metalearners for estimating heterogeneous treatment effects using machine learning. Proceedings of the National Academy of Sciences of the United States of America 116 (10):4156–65. doi:10.1073/pnas.1804597116.
  • Li, R., H. Wang, and W. Tu. 2021. Robust estimation of heterogeneous treatment effects using electronic health record data. Statistics in Medicine 40 (11):2713–52. https://arxiv.org/abs/2105.03325. doi:10.1002/sim.8926.
  • Liano, K. 1996. Robust error measure for supervised neural network learning with outliers. IEEE Transactions on Neural Networks 7 (1):246–50. doi:10.1109/72.478411.
  • Meinshausen, N., and G. Ridgeway. 2006. Quantile regression forests. Journal of Machine Learning Research 7 (6):983–99.
  • Murphy, S. A. 2003. Optimal dynamic treatment regimes. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 65 (2):331–55. doi:10.1111/1467-9868.00389.
  • Nair, V., and G. E. Hinton. 2010. Rectified linear units improve restricted boltzmann machines. Proceedings of the 27th International Conference on International Conference on Machine Learning, 807–14.
  • Nie, X., and S. Wager. 2017. Quasi-oracle estimation of heterogeneous treatment effects. arXiv preprint, arXiv:1712.04912.
  • Park, Y., and J. Ho. 2019. Tackling overfitting in boosting for noisy healthcare data. IEEE Transactions on Knowledge and Data Engineering 33 (7):2995–3006.
  • Powers, S., J. Qian, K. Jung, A. Schuler, N. H. Shah, T. Hastie, and R. Tibshirani. 2018. Some methods for heterogeneous treatment effect estimation in high dimensions. Statistics in Medicine 37 (11):1767–1787. doi:10.1002/sim.7623.
  • Ridgeway, G. 2007. Generalized boosted models: A guide to the gbm package. Update 1 (1):2007.
  • Robins, J. M. 2004. Optimal structural nested models for optimal sequential decisions. In Proceedings of the Second Seattle Symposium in Biostatistics, 189–326. New York, NY: Springer.
  • Robins, J. M., and A. Rotnitzky. 1995. Semiparametric efficiency in multivariate regression models with missing data. Journal of the American Statistical Association 90 (429):122–129. doi:10.1080/01621459.1995.10476494.
  • Roy, M.-H., and D. Larocque. 2012. Robustness of random forests for regression. Journal of Nonparametric Statistics 24 (4):993–1006. doi:10.1080/10485252.2012.715161.
  • Rubin, D. B. 2004. Multiple imputation for nonresponse in surveys, Volume 81. Hoboken, NJ: John Wiley & Sons.
  • Rumelhart, D. E., G. E. Hinton, and R. J. Williams. 1986. Learning representations by back-propagating errors. nature 323 (6088):533–536. doi:10.1038/323533a0.
  • Sekhon, J. S. 2008. The neyman-rubin model of causal inference and estimation via matching methods. The Oxford Handbook of Political Methodology 2:1–32.
  • The ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group. 2002. Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diureticthe antihypertensive and lipid-lowering treatment to prevent heart attack trial (ALLHAT). JAMA 288 (23):2981–2997. doi:10.1001/jama.288.23.2981.
  • Tian, L., A. A. Alizadeh, A. J. Gentles, and R. Tibshirani. 2014. A simple method for estimating interactions between a treatment and a large number of covariates. Journal of the American Statistical Association 109 (508):1517–1532. doi:10.1080/01621459.2014.951443.
  • Watkins, C. J., and P. Dayan. 1992. Q-learning. Machine Learning 8 (3–4):279–292. doi:10.1023/A:1022676722315.
  • Watkins, C. J. C. H. 1989. Learning from delayed rewards.
  • Xiao, W., H. H. Zhang, and W. Lu. 2019. Robust regression for optimal individualized treatment rules. Statistics in Medicine 38 (11):2059–2073. doi:10.1002/sim.8102.
  • Zhang, W., J. Li, and L. Liu. 2020. A unified survey on treatment effect heterogeneity modeling and uplift modeling. arXiv preprint, arXiv:2007.12769.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.