78
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Sampling by divergence minimization

ORCID Icon, &
Received 07 May 2022, Accepted 05 Mar 2023, Published online: 21 Apr 2023

References

  • Andrieu, C., and J. Thoms. 2008. A tutorial on adaptive MCMC. Statistics and Computing 18 (4):343–73. doi:10.1007/s11222-008-9110-y.
  • Atchadé, Y., G. Fort, E. Moulines, and P. Priouret. 2011. Adaptive Markov chain Monte Carlo: Theory and methods. Bayesian Time Series Models 1. Cambridge: Cambridge University Press. doi:10.1017/CBO9780511984679.003.
  • Bai, Y., G. O. Roberts, and J. S. Rosenthal. 2011. On the containment condition for adaptive Markov chain Monte Carlo algorithms. Advances and Applications in Statistics 21:1.
  • Bédard, M. Aug 2007. Weak convergence of metropolis algorithms for non-i.i.d. target distributions. The Annals of Applied Probability 17 (4):1222–44. doi:10.1214/105051607000000096.
  • Brooks, S., A. Gelman, G. Jones, and X.-L. Meng. 2011. Handbook of Markov Chain Monte Carlo. New York: CRC press.
  • Carvalho, C. M., N. G. Polson, and J. G. Scott. 2009. Handling sparsity via the horseshoe. In Proceedings of the Twelth International Conference on Artificial Intelligence and Statistics. PMLR. http://proceedings.mlr.press/v5/carvalho09a.html.
  • Craiu, R. V., J. S. Rosenthal, and C. Yang. 2009. Learn from thy neighbor: Parallel-chain and regional adaptive MCMC. Journal of the American Statistical Association 104 (488):1454–66. doi:10.1198/jasa.2009.tm08393.
  • Craiu, R. V., L. Gray, K. Łatuszyński, N. Madras, G. O. Roberts, and J. S. Rosenthal. 2015. Stability of adversarial Markov chains, with an application to adaptive MCMC algorithms. The Annals of Applied Probability 25 (6):3592–623. doi:10.1214/14-AAP1083.
  • Elvira, V., L. Martino, and C. P. Robert. 2018. Rethinking the effective sample size.
  • Gelman, A., and C. Pasarica. 2007. Adaptively scaling the metropolis algorithm using expected squared jumped distance. SSRN Electronic Journal 20:1. doi:10.2139/ssrn.1010403.
  • Geyer, C. J. 1991. Markov chain Monte Carlo maximum likelihood. In Computing science and statistics. Fairfax Station: Interface Foundation of North America.
  • Gilks, W. R., N. G. Best, and K. K. C. Tan. 1995. Adaptive rejection metropolis sampling within gibbs sampling. Journal of the Royal Statistical Society. Series C (Applied Statistics) 44 (4):455–72. http://www.jstor.org/stable/2986138.
  • Haario, H., E. Saksman, and J. Tamminen. 1999. Adaptive proposal distribution for random walk metropolis algorithm. Computational Statistics 14 (3):375–95. doi:10.1007/s001800050022.
  • Haario, H., E. Saksman, and J. Tamminen. 2001. An adaptive Metropolis algorithm. Bernoulli 7 (2):223–42. https://projecteuclid.org:443/euclid.bj/1080222083. doi:10.2307/3318737.
  • Hastings, W. K. 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57 (1):97–109. http://www.jstor.org/stable/2334940. doi:10.1093/biomet/57.1.97.
  • Higham, N. 2009. Cholesky factorization. Computational Statistics 1 (2):251–4. doi:10.1002/wics.18.
  • Liu, J. S., F. Liang, and W. H. Wong. 2000. The multiple-try method and local optimization in metropolis sampling. Journal of the American Statistical Association 95 (449):121–34. http://www.jstor.org/stable/2669532. doi:10.1080/01621459.2000.10473908.
  • Martino, L. 2018. A review of multiple try mcmc algorithms for signal processing. Digital Signal Processing 75:134–52. https://www.sciencedirect.com/science/article/pii/S1051200418300149. doi:10.1016/j.dsp.2018.01.004.
  • Martino, L., J. Read, and D. Luengo. 2015. Independent doubly adaptive rejection metropolis sampling within gibbs sampling. IEEE Transactions on Signal Processing 63 (12):3123–38. doi:10.1109/TSP.2015.2420537.
  • Meyer, R., B. Cai, and F. Perron. 2008. Adaptive rejection metropolis sampling using lagrange interpolation polynomials of degree 2. Computational Statistics & Data Analysis 52 (7):3408–23. doi:10.1016/j.csda.2008.01.005.
  • Murphy, K. 2012. Machine learning: A probabilistic perspective. Cambridge, MA: MIT Press. ISBN 9780262018029.
  • Pompe, E., C. Holmes, and K. Łatuszyński. 2019. A framework for adaptive MCMC targeting multimodal distributions.
  • Roberts, G. O., and J. S. Rosenthal. 1998. Optimal scaling of discrete approximations to langevin diffusions. Journal of the Royal Statistical Society Series B: Statistical Methodology 60 (1):255–68. doi:10.1111/1467-9868.00123.
  • Roberts, G. O., and J. S. Rosenthal. 2001. Optimal scaling for various Metropolis-Hastings algorithms. Statistical Science 16 (4):11. doi:10.1214/ss/1015346320.
  • Roberts, G. O., and J. S. Rosenthal. 2007. Coupling and ergodicity of adaptive Markov Chain Monte Carlo algorithms. Journal of Applied Probability 44 (2):458–75. doi:10.1239/jap/1183667414.
  • Roberts, G. O., and J. S. Rosenthal. 2009. Examples of adaptive MCMC. Journal of Computational and Graphical Statistics 18 (2):349–67. doi:10.1198/jcgs.2009.06134.
  • Roberts, G. O., and A. F. M. Smith. 1994. Simple conditions for the convergence of the Gibbs sampler and Metropolis-Hastings algorithms. Stochastic Processes and Their Applications 49 (2):207–16. doi:10.1016/0304-4149(94)90134-1.
  • Rosenthal, J. S. 2011. Handbook of Markov Chain Monte Carlo. In Optimal proposal distributions and adaptive MCMC, chapter 4. New York: CRC Press.
  • Salimans, T., D. P. Kingma, and M. Welling. 2015. Markov Chain Monte Carlo and variational inference: Bridging the gap.
  • Shannon, C. E. 1948. A mathematical theory of communication. Bell System Technical Journal 27 (3):379–423. http://dblp.uni-trier.de/db/journals/bstj/bstj27.html#Shannon48. doi:10.1002/j.1538-7305.1948.tb01338.x.
  • Swendsen, R. H., and J.-S. Wang. 1986. Replica Monte Carlo simulation of spin-glasses. Physical Review Letters 57 (21):2607–9. doi:10.1103/PhysRevLett.57.2607.
  • Tawn, N. G., G. O. Roberts, and J. S. Rosenthal. 2019. Weight-preserving simulated tempering.
  • Titsias, M., and P. Dellaportas. 2019. Gradient-based adaptive Markov Chain Monte Carlo. In Advances in neural information processing systems, 32, 15730–9. Vancouver: Curran Associates, Inc. https://proceedings.neurips.cc/paper/2019/file/624567140fecc40163fed3c45a959a7c-Paper.pdf.
  • Turner, R., and B. Neal. 2017. How well does your sampler really work?
  • Yamano, T. 2009. A generalization of the Kullback-Leibler divergence and its properties. Journal of Mathematical Physics 50 (4):043302. doi:10.1063/1.3116115.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.