32
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Modeling the complexity of basketball games using marked mutually exciting point processes

&
Received 20 Jan 2023, Accepted 24 Apr 2024, Published online: 07 May 2024

References

  • Berger, J., and D. Pope. 2011. Can losing lead to winning? Management Science 57 (5):817–27. doi:10.1287/mnsc.1110.1328.
  • Boshnakov, G., T. Kharrat, and I. G. McHale. 2017. A bivariate Weibull count model for forecasting association football scores. International Journal of Forecasting 33 (2):458–66. doi:10.1016/j.ijforecast.2016.11.006.
  • Cattelan, M., C. Varin, and D. Firth. 2013. Dynamic Bradley–Terry modelling of sports tournaments. Journal of the Royal Statistical Society Series C: Applied Statistics 62 (1):135–50. doi:10.1111/j.1467-9876.2012.01046.x.
  • Cervone, D., A. D’Amour, L. Bornn, and K. Goldsberry. 2016. A multiresolution stochastic process model for predicting basketball possession outcomes. Journal of the American Statistical Association 111 (514):585–99. doi:10.1080/01621459.2016.1141685.
  • Chen, F., and W. H. Tan. 2018. Marked self-exciting point process modelling of information diffusion on Twitter. The Annals of Applied Statistics 12 (4):2175–196. doi:10.1214/18-AOAS1148.
  • Chen, T., and C. Guestrin. 2016. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Association for Computing Machinery, New York, NY, United States. p. 785–94.
  • Chen, T., T. He, M. Benesty, V. Khotilovich, Y. Tang, H. Cho, K. Chen, R. Mitchell, I. Cano, T. Zhou, et al. 2023. xgboost: Extreme gradient boosting. R package version 1.7.5.1. https://CRAN.R-project.org/package=xgboost.
  • Colley, W. 2002. Colley’s bias free college football ranking method: The Colley Matrix Explained. Princeton: Princeton University.
  • De Saá Guerra, Y., J. M. Martín Gonzalez, S. Sarmiento Montesdeoca, D. Rodriguez Ruiz, N. Arjonilla López, and J. M. García-Manso. 2013. Basketball scoring in NBA games: An example of complexity. Journal of Systems Science and Complexity 26 (1):94–103. doi:10.1007/s11424-013-2282-3.
  • Elo, A. E. 1978. The rating of chessplayers, past and present. New York, United States: Arco Publishing, Inc.
  • Fox, E. W., M. B. Short, F. P. Schoenberg, K. D. Coronges, and A. L. Bertozzi. 2016. Modeling e-mail networks and inferring leadership using self-exciting point processes. Journal of the American Statistical Association 111 (514):564–84. doi:10.1080/01621459.2015.1135802.
  • Fryda, T., E. LeDell, N. Gill, S. Aiello, A. Fu, A. Candel, C. Click, T. Kraljevic, T. Nykodym, P. Aboyoun, et al. 2024. h2o: R interface for the ‘H2O’ scalable machine learning platform. R package version 3.44.0.3. https://CRAN.R-project.org/package=h2o.
  • Gabel, A., and S. Redner. 2012. Random walk picture of basketball scoring. Journal of Quantitative Analysis in Sports 8 (1):1–20. doi:10.1515/1559-0410.1416.
  • Günther, F., and S. Fritsch. 2010. Neuralnet: Training of neural networks. The R Journal 2 (1):30. doi:10.32614/RJ-2010-006.
  • Halberstadt, J. B., and G. M. Levine. 1999. Effects of reasons analysis on the accuracy of predicting basketball games 1. Journal of Applied Social Psychology 29 (3):517–30. doi:10.1111/j.1559-1816.1999.tb01399.x.
  • Harville, D. A., and M. H. Smith. 1994. The home-court advantage: How large is it, and does it vary from team to team? The American Statistician 48 (1):22–8. doi:10.2307/2685080.
  • Hawkes, A. G. 1971a. Point spectra of some mutually exciting point processes. Journal of the Royal Statistical Society Series B: Statistical Methodology 33 (3):438–43. doi:10.1111/j.2517-6161.1971.tb01530.x.
  • Hawkes, A. G. 1971b. Spectra of some self-exciting and mutually exciting point processes. Biometrika 58 (1):83–90. doi:10.2307/2334319.
  • Hawkes, A. G. 2018. Hawkes processes and their applications to finance: A review. Quantitative Finance 18 (2):193–8. doi:10.1080/14697688.2017.1403131.
  • Hawkes, A. G., and D. Oakes. 1974. A cluster process representation of a self-exciting process. Journal of Applied Probability 11 (3):493–503. doi:10.2307/3212693.
  • Keener, J. P. 1993. The Perron-Frobenius theorem and the ranking of football teams. SIAM Review 35 (1):80–93. doi:10.1137/1035004.
  • Kharrat, T., I. G. McHale, and J. L. Peña. 2020. Plus–minus player ratings for soccer. European Journal of Operational Research 283 (2):726–36. doi:10.1016/j.ejor.2019.11.026.
  • Kubatko, J., D. Oliver, K. Pelton, and D. T. Rosenbaum. 2007. A starting point for analyzing basketball statistics. Journal of Quantitative Analysis in Sports 3 (3):1–24. doi:10.2202/1559-0410.1070.
  • Kvam, P., and J. S. Sokol. 2006. A logistic regression/Markov chain model for NCAA basketball. Naval Research Logistics (NRL) 53 (8):788–803. doi:10.1002/nav.20170.
  • Lewis, P. A. W, and G. S. Shedler. 1979. Simulation of nonhomogeneous poisson processes by thinning. Naval Research Logistics Quarterly 26 (3):403–13. doi:10.1002/nav.3800260304.
  • Li, T., and H. Han. 2020. A high-performance basketball game forecast using magic feature extraction. In Recent advances in data science, ed. H. Han, T. Wei, W. Liu, and F. Han, 35–50. Singapore: Springer Singapore.
  • Li, Y., L. Wang, and F. Li. 2021. A data-driven prediction approach for sports team performance and its application to National Basketball Association. Omega 98:102123. doi:10.1016/j.omega.2019.102123.
  • Li, Z., L. Cui, and J. Chen. 2018. Traffic accident modelling via self-exciting point processes. Reliability Engineering & System Safety 180:312–20. doi:10.1016/j.ress.2018.07.035.
  • Lopez, M. J., and G. J. Matthews. 2015. Building an NCAA men’s basketball predictive model and quantifying its success. Journal of Quantitative Analysis in Sports 11 (1):5–12. doi:10.1515/jqas-2014-0058.
  • Lorig, M., Z. Zhou, and B. Zou. 2021. Optimal bookmaking. European Journal of Operational Research 295 (2):560–74. doi:10.1016/j.ejor.2021.03.005.
  • Martín-González, J. M., Y. de Saá Guerra, J. M. García-Manso, E. Arriaza, and T. Valverde-Estévez. 2016. The poisson model limits in NBA basketball: Complexity in team sports. Physica A: Statistical Mechanics and Its Applications 464:182–90. doi:10.1016/j.physa.2016.07.028.
  • Massey, K. 1997. Statistical models applied to the rating of sports teams. Bluefield, Virginia, United States: Bluefield College.
  • Merritt, S., and A. Clauset. 2014. Scoring dynamics across professional team sports: Tempo, balance and predictability. EPJ Data Science 3 (1):21. doi:10.1140/epjds29.
  • Meyer, S. 2018. Self-exciting point processes: Infections and implementations. Statistical Science 33 (3):327–29. doi:10.1214/18-STS653.
  • Miller, J. B., and A. Sanjurjo. 2018. Surprised by the hot hand fallacy? A truth in the law of small numbers. Econometrica 86 (6):2019–47. doi:10.3982/ECTA14943.
  • Ogata, Y. 1998. Space-time point-process models for earthquake occurrences. Annals of the Institute of Statistical Mathematics 50 (2):379–402. doi:10.1023/A:1003403601725.
  • Olson, J. F., and K. M. Carley. 2013. Exact and approximate EM estimation of mutually exciting Hawkes processes. Statistical Inference for Stochastic Processes 16 (1):63–80. doi:10.1007/s11203-013-9074-1.
  • Ozkan, I. A. 2020. A novel basketball result prediction model using a concurrent neuro-fuzzy system. Applied Artificial Intelligence 34 (13):1038–54. doi:10.1080/08839514.2020.1804229.
  • Pai, P. F., L. H. ChangLiao, and K. P. Lin. 2017. Analyzing basketball games by a support vector machines with decision tree model. Neural Computing and Applications 28 (12):4159–67. doi:10.1007/s00521-016-2321-9.
  • Park, J., and M. E. J. Newman. 2005. A network-based ranking system for US college football. Journal of Statistical Mechanics: Theory and Experiment 2005 (10):P10014. doi:10.1088/1742-5468/2005/10/P10014.
  • Ronning, G. 1989. Maximum likelihood estimation of Dirichlet distributions. Journal of Statistical Computation and Simulation 32 (4):215–21. doi:10.1080/00949658908811178.
  • Shi, J., and K. Song. 2021. A discrete-time and finite-state Markov chain based in-play prediction model for NBA basketball matches. Communications in Statistics—Simulation and Computation 50 (11):3768–76. doi:10.1080/03610918.2019.1633351.
  • Shi, J., and X. Y. Tian. 2020. Learning to rank sports teams on a graph. Applied Sciences 10 (17):5833. doi:10.3390/app10175833.
  • Silver, N., and R. Fischer-Baum. 2015. How we calculate NBA ELO ratings. http://fivethirtyeight.com/features/how-we-calculate-nba-elo-ratings.
  • Song, K., and J. Shi. 2020. A gamma process based in-play prediction model for National Basketball Association games. European Journal of Operational Research 283 (2):706–13. doi:10.1016/j.ejor.2019.11.012.
  • Stekler, H., D. Sendor, and R. Verlander. 2010. Issues in sports forecasting. International Journal of Forecasting 26 (3):606–21. doi:10.1016/j.ijforecast.2010.01.003.
  • Stern, H. S. 1994. A Brownian motion model for the progress of sports scores. Journal of the American Statistical Association 89 (427):1128–34. doi:10.2307/2290943.
  • Štrumbelj, E., and P. Vračar. 2012. Simulating a basketball match with a homogeneous Markov model and forecasting the outcome. International Journal of Forecasting 28 (2):532–42. doi:10.1016/j.ijforecast.2011.01.004.
  • Terner, Z., and A. Franks. 2021. Modeling player and team performance in basketball. Annual Review of Statistics and Its Application 8 (1):1–23. doi:10.1146/annurev-statistics-040720-015536.
  • Tian, X., Y. Gao, and J. Shi. 2022. Modeling basketball games by inverse Gaussian processes. Communications in Statistics—Simulation and Computation 51 (11):6246–56. doi:10.1080/03610918.2020.1798461.
  • Veen, A., and F. P. Schoenberg. 2008. Estimation of space–time branching process models in seismology using an EM–type algorithm. Journal of the American Statistical Association 103 (482):614–24. doi:10.1198/016214508000000148.
  • Vračar, P., E. Štrumbelj, and I. Kononenko. 2016. Modeling basketball play-by-play data. Expert Systems with Applications 44:58–66. doi:10.1016/j.eswa.2015.09.004.
  • Xu, L., J. A. Duan, and A. Whinston. 2014. Path to purchase: A mutually exciting point process model for online advertising and conversion. Management Science 60 (6):1392–412. doi:10.1287/mnsc.2014.1952.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.