188
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Statistical Analysis of Non Linear Least Squares Estimation for Harmonic Signals in Multiplicative and Additive Noise

, , , &
Pages 217-240 | Received 03 May 2012, Accepted 21 Sep 2012, Published online: 15 Dec 2014

References

  • Akaike, H. (1974). A new look at the statistical model identification. IEEE Trans. Automat. Control 19(6):716–723.
  • Bai, Z.D., Rao, C.R., Chow, M., Kundu, D. (2003). An efficient algorithm for estimating the parameters of superimposed exponential signals. J. Stat. Plan. Infer. 110(1-2):23–34.
  • Besson, O., Castanie, F. (1993). On estimating the frequency of a sinusoid in auto-regressive multiplicative noise. Signal Process. 30(1):65–83.
  • Besson, O., Stoica, P. (1999). Nonlinear least-squares approach to frequency estimation and detection for sinusoidal signals with arbitrary envelope. Digit. Signal Process. 9(1):45–56.
  • Bian, J.W., Li, H.W., Peng, H.M. (2009). An efficient and fast algorithm for estimating the frequencies of superimposed exponential signals in zero-mean multiplicative and additive noises. J. Stat. Comput. Sim. 79(12):1407–1423.
  • Bian, J.W., Li, H.W., Peng, H.M. (2011). An efficient and fast algorithm for estimating the frequencies of 2-D superimposed exponential signals in zero-mean multiplicative and additive noise. J. Stat. Plan. Infer. 141(3):1277–1289.
  • Bressler, Y., Macovski, A. (1986). Exact maximum likelihood parameters estimation of superimposed exponential signals in noise. IEEE Trans. Signal Process. 34(5):1081–1089.
  • Chan, F. K.W., So, H.C. (2004). Accurate frequency estimation for real harmonic sinusoids. IEEE Signal Process. Lett. 11(7):609–612.
  • Chan, F. K.W., So, H.C., Lau, W.H., Chan, C.F. (2010). Efficient approach for sinusoidal frequency estimation of gapped data. IEEE Signal Process. Lett. 17(6):611–614.
  • Cohen, G., Francos, J.M. (2002). Least squares estimation of 2-D sinusoids in colored noise: asymptotic analysis. IEEE Trans. Inf. Theory 48(8):2243–2252.
  • Francos, J.M., Friedlander, B. (1995). Bounds for esitmation of multicomponent signals with random amplitude and deterministic phase. IEEE Trans. signal Process. 43(5):1161–1172.
  • Ghogho, M., Swami, A., Garel, B. (1999a). Performance analysis of cyclic statistics for the estimation of harmonics in multiplicative and additive noise. IEEE Trans. Signal Process. 47(12):3235–3249.
  • Ghogho, M., Swami, A., Nandi, A.K. (1999b). Non-linear least squares estimation for harmonics in multiplicative and additive noise. Signal Process. 78(1):43–60.
  • Giannakis, G.B., Zhou, G.T. (1995). Harmonics in multiplicative and additive noise: parameter estimation using cyclic statistics. IEEE Trans. Signal Process. 43(9):2217–2221.
  • Hannan, E.J. (1973). The estimation of frequency. J. Appl. Probab. 10(3):510–519.
  • Hwang, J.K., Chen, Y.C. (1993). A combined detection-estimation algorithm for the harmonic-retrieval problem. Signal Process. 30(2):177–197.
  • Kannan, N., Kundu, D. (1994). On modified EVLP and ML methods for estimating superimposed exponential signals. Signal Process. 39(3):223–233.
  • Kavalieris, L., Hannan, E.J. (1994). Determining the number of terms in a trigonometric regression. J. Time Ser. Anal. 15(6):613–625.
  • Kundu, D., Mitra, A. (1995). Consistent method of estimating superimposed exponential signals. Scand. J. Statist. 22(1):73–82.
  • Kundu, D., Mitra, A. (1999). On asymptotic behavior of the least squares estimators and the confidence intervals of the superimposed exponential signals. Signal Process. 72(2):29–139.
  • Kundu, D., Mitra, A. (2000). Detecting the number of signals for an undamped exponential model using cross-validation approach. Signal Process. 80(3):525–534.
  • Li, H.W., Cheng, Q.S. (1998). Cyclic statistics based approach to harmonic retrieval in multiplicative and additive noise. Acta Electron. Sinica 26(7):105–112.
  • Li, J., Stoica, P. (1996). Efficient mixed-spectrum estimation with applications to target feature extraction. IEEE Trans. Signal Process. 44(2):281–295.
  • Mangulis, V. (1965). Handbook of Series For Scientists and Engineers. New York: Academic Press.
  • Mao, Y.C., Bao, Z. (1996). Cramer–Rao bound for harmonics in Gaussian multiplicative and complex Gaussian additive noise. In proceedings of ICSP, pp.497–500.
  • Nandi, S. (2001). Analyzing some non-stationary signal processing models. Ph.D. Thesis, Indian Institute of Technology, Kanpur.
  • Quinn, B.G. (1989). Estimating the number of terms in a sinusoidal regression. J. Time Ser. Anal. 10(1):71–75.
  • Quinn, B.G. (1994). Estimating frequency by interpolation using Fourier coefficients. IEEE Trans. Signal Process. 42(5):1264–1268.
  • Quinn, B.G., Hannan, E.J. (2001). The Estimation and Tracking of Frequency. New York: Cambridge University Press.
  • Rao, C.R. (1973). Linear Statistical Inference and Its Applications. New York: Wiley.
  • Rao, C.R. (1988). Some recent results in signal detection. In Statistical Decision Theory and Related Topics. New York: Springer, (pp.319–332).
  • Rao, C.R., Zhao, L.C. (1993). Asymptotic behavior of maximum likelihood estimates of superimposed exponential signals. IEEE Trans. Signal Process. 41(3):1461–1464.
  • Roy, R., Kailath, T. (1989). ESPRIT - Estimation of signal parameters via rotational invariance techniques. IEEE Trans. Signal Process. 37(7):984–995.
  • Sadler, B., Giannakis, G., Shamsunder, S. (1995). Noise subspace techniques in non-Gaussian noise using culmulants. IEEE Trans. Aerosp. Electron. Syst. 31(3):1009–1018.
  • Schwarz, G. (1978). Estimating the dimension of a model. Ann. Stat. 6(2):461–464.
  • Shi, Z.H., Fairman, F.W. (1994). Harmonic retrieval via state space and fourth-order cumulants. IEEE Trans. Signal Process. 42(5):1109–1119.
  • So, H.C., Chan, F. K.W., Lau, W.H., Chan, C.F. (2010). An efficient approach for two-dimensional parameter estimation of a single-tone. IEEE Trans. Signal Process. 58(4):1999–2009.
  • Stoica, P., Jakobsson, A., Li, J. (1997). Cisoid parameter estimation in the colored noise case: asymptotic Cramer–Rao bound, maximum likelihood, and nonlinear least-squares. IEEE Trans. Signal Process. 45(8):2048–2059.
  • Sun, W., So, H.C. (2012). Accurate and computationally efficient tensor-based subspace approach for multi-dimensional harmonic retrieval. IEEE Trans. Signal Process. 60(10):5077–5088.
  • Swami, A. (1994). Multiplicative noise models: parameter estimation using cumulants. Signal Process. 36(3):355–373.
  • Tufts, D.W., Kumaresan, R. (1982). Estimation of frequencies of multiple sinusoids: making linear prediction perform like maximum likelihood. Proc. IEEE 70(9):975–989.
  • Walker, A.M. (1971). On the estimation of a harmonic component in a time series with stationary independent residuals. Biometrika 58(1):21–36.
  • Walker, A.M. (1973). On the estimation of a harmonic component in a time series with stationary dependent residuals. Adv. Appl. Probab. 5(2):217–241.
  • Wang, X.B. (1993). An AIC type estimator for the number of sinusoids. J. Time Ser. Anal. 14(4):433–440.
  • Wu, C.F. (1981). Asymptotic theory of nonlinear least squares estimation. Ann. Stat. 9(3):501–513.
  • Yang, S.Y., Li, H.W. (2007a). Estimating the number of harmonics using enhanced matrix. IEEE Signal Process. Lett. 14(2):137–140.
  • Yang, S.Y., Li, H.W. (2007b). Estimation of the number of harmonics in multiplicative and additive noise. Signal Process. 87(5):1128–1137.
  • Zhang, X.D., Liang, Y.C., Li, Y.D. (1994). A hybrid approach to harmonic retrieval in non-Gaussian ARMA noise. IEEE Trans. Inf. Theory 40(4):1220–1226.
  • Zhang, Y., Wang, S.X. (2000). Harmonic retrieval in colored non-Gaussian noise using cumulants. IEEE Trans. Signal Process. 48(4):982–987.
  • Zhao, L.C., Krishnaiah, P.R., Bai, Z.D. (1986). On detection of the number of signals in the presence of white noise. J. Multivar. Anal. 20(1):1–25.
  • Zhou, G.T., Giannakis, G.B. (1995). Harmonics in multiplicative and additive noise: performance analysis of cyclic estimators. IEEE Trans. Signal Process. 43(6):1445–1460.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.