140
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Fractional approaches for the distribution of innovation sequence of INAR(1) processes

ORCID Icon, ORCID Icon, ORCID Icon &
Pages 2205-2216 | Received 28 Oct 2018, Accepted 05 Jan 2019, Published online: 07 Feb 2019

References

  • Al-Osh, M. A., and E. E. A. A. Aly. 1992. First order autoregressive time series with negative binomial and geometric marginals. Communications in Statistics – Theory and Methods 21 (9):2483–92. doi:10.1080/03610929208830925.
  • Aly, E. E. A. A., and N. Bouzar. 2017. Expectation thinning operators based on linear fractional probability generating functions. Journal of the Indian Society for Probability and Statistics doi:10.1007/s41096-018-0056-x.
  • Alzaid, A., and M. Al-Osh. 1988. First-order integer-valued autoregressive [INAR (1)] process: Distributional and regression properties. Statistica Neerlandica 42 (1):53–61. doi:10.1111/j.1467-9574.1988.tb01521.x.
  • Barreto-Souza, W. 2015. Zero-modified geometric INAR(1) process for modelling count time series with deflation or inflation of zeros. Journal of Time Series Analysis 36 (6):839–52. doi:10.1111/jtsa.12131.
  • Borges, P., F. F. Molinares, and M. Bourguignon. 2016. A geometric time series model with inflated-parameter Bernoulli counting series. Statistics & Probability Letters 119 (Supplement C):264–72. doi:10.1016/j.spl.2016.08.012.
  • Borges, P., M. Bourguignon, and F. F. Molinares. 2017. A generalised NGINAR(1) process with inflated-parameter geometric counting series. Australian & New Zealand Journal of Statistics 59 (1):137–50. doi:10.1111/anzs.12184.
  • Bourguignon, M. 2018. Modelling time series of counts with deflation or inflation of zeros. Statistics and Its Interface 11 (4):631–9. doi:10.4310/SII.2018.v11.n4.a7.
  • Bourguignon, M., and C. H. Weiß. 2017. An INAR(1) process for modeling count time series with equidispersion, underdispersion and overdispersion. TEST 26 (4):847–68. doi:10.1007/s11749-017-0536-4.
  • Bourguignon, M., P. Borges, and F. F. Molinares. 2018. A new geometric INAR(1) process based on counting series with deflation or inflation of zeros. Journal of Statistical Computation and Simulation 88 (17):3338–48. doi:10.1080/00949655.2018.1516220.
  • Feller, W. 2008. An introduction to probability theory and its applications, 3rd ed. Hoboker, New Jersey: John Wiley & Sons.
  • Jazi, M. A., G. Jones, and C.-D. Lai. 2012. Integer valued AR(1) with geometric innovations. Journal of the Iranian Statistical Society 11 (2):173–90.
  • Johnson, N. L., A. W. Kemp, and S. Kotz. 2005. Univariate discrete distribution, 3rd ed. Hoboker, New Jersey: John Wiley & Sons.
  • McKenzie, E. 1985. Some simple models for discrete variate time series. Journal of the American Water Resources Association 21 (4):645–50. doi:10.1111/j.1752-1688.1985.tb05379.x.
  • McKenzie, E. 1986. Autoregressive moving-average processes with negative-binomial and geometric marginal distributions. Advances in Applied Probability 18 (03):679–705. doi:10.2307/1427183.
  • Miletić Ilić, A. V. 2016. A geometric time series model with a new dependent Bernoulli counting series. Communications in Statistics – Theory and Methods 45 (21):6400–15. doi:10.1080/03610926.2014.895840.
  • Miletić Ilić, A. V., M. M. Ristić, A. S. Nastić, and H. S. Bakouch. 2018. An INAR(1) model based on a mixed dependent and independent counting series. Journal of Statistical Computation and Simulation 88 (2):290–304. doi:10.1080/00949655.2017.1388380.
  • Nastić, A. S. 2012. On shifted geometric INAR(1) models based on geometric counting series. Communications in Statistics – Theory and Methods 41 (23):4285–301. doi:10.1080/03610926.2011.573164.
  • Nastić, A. S., and M. M. Ristić. 2012. Some geometric mixed integer-valued autoregressive (INAR) models. Statistics & Probability Letters 82 (4):805–11. doi:10.1016/j.spl.2012.01.007.
  • Nastić, A. S., M. M. Ristić, and H. S. Bakouch. 2012. A combined geometric INAR(p) model based on negative binomial thinning. Mathematical and Computer Modelling 55 (5–6):1665–72. doi:10.1016/j.mcm.2011.10.080.
  • Nastić, A. S., P. N. Laketa, and M. M. Ristić. 2016. Random environment integer-valued autoregressive process. Journal of Time Series Analysis 37 (2):267–87. doi:10.1111/jtsa.12161.
  • Nastić, A. S., M. M. Ristić, and A. V. Miletić Ilić. 2017a. A geometric time-series model with an alternative dependent Bernoulli counting series. Communications in Statistics – Theory and Methods 46 (2):770–85. doi:10.1080/03610926.2015.1005100.
  • Nastić, A. S., M. M. Ristić, and A. D. Janjić. 2017b. A mixed thinning based geometric INAR(1) model. Filomat 31 (13):6400–15.
  • Popović, P. M. 2016. A bivariate INAR(1) model with different thinning parameters. Statistical Papers 57 (2):517–38. doi:10.1007/s00362-015-0667-1.
  • Popović, P. M., M. M. Ristić, and A. S. Nastić. 2016. A geometric bivariate time series with different marginal parameters. Statistical Papers 57 (3):731–53. doi:10.1007/s00362-015-0677-z.
  • Risti, M. M., M. Bourguignon, and A. S. Nasti. 2018. Zero-Inflated NGINAR(1) process. Communications in Statistics – Theory and Methods 0 (0):1–16. doi:10.1080/03610926.2018.1435808.
  • Ristić, M. M., and A. S. Nastić. 2012. A mixed INAR(p) model. Journal of Time Series Analysis 33 (6):903–15. doi:10.1111/j.1467-9892.2012.00806.x.
  • Ristić, M. M., H. S. Bakouch, and A. S. Nastić. 2009. A new geometric first-order integer-valued autoregressive [NGINAR(1)] process. Journal of Statistical Planning and Inference 139 (7):2218–26. doi:10.1016/j.jspi.2008.10.007.
  • Ristić, M. M., A. S. Nastić, K. Jayakumar, and H. S. Bakouch. 2012. A bivariate INAR(1) time series model with geometric marginals. Applied Mathematics Letters 25 (3):481–5. doi:10.1016/j.aml.2011.09.040.
  • Ristić, M. M., A. S. Nastić, and A. V. Miletić Ilić. 2013. A geometric time series model with dependent Bernoulli counting series. Journal of Time Series Analysis 34 (4):466–76. doi:10.1111/jtsa.12023.
  • Steutel, F. W., and K. Van Harn. 1979. Discrete analogues of self-decomposability and stability. The Annals of Probability 7:893–899. doi:10.1007/s00362-016-0808-1.
  • Yang, K., D. Wang, B. Jia, and H. Li. 2018. An integer-valued threshold autoregressive process based on negative binomial thinning. Statistical Papers 59 (3):1131–60. doi:10.1007/s00362-016-0808-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.