154
Views
4
CrossRef citations to date
0
Altmetric
Article

On improved accelerated sequential estimation of the mean of an inverse Gaussian distribution

ORCID Icon & ORCID Icon
Pages 6127-6143 | Received 13 May 2020, Accepted 17 Nov 2020, Published online: 02 Dec 2020

References

  • Anscombe, F. J. 1953. Sequential estimation. Journal of the Royal Statistical Society: Series B (Methodological) 15 (1):1–29. doi:10.1111/j.2517-6161.1953.tb00121.x.
  • Bapat, S. R. 2018. On purely sequential estimation of an inverse Gaussian mean. Metrika 81 (8):1005–24. doi:10.1007/s00184-018-0665-0.
  • Birnbaum, Z. W., and S. C. Saunders. 1958. A statistical model for life length of materials. Journal of the American Statistical Association 53 (281):151–60. doi:10.1080/01621459.1958.10501433.
  • Birnbaum, Z. W., and S. C. Saunders. 1969. Estimation for a family of life distributions. Journal of Applied Probability 6 (2):319–27. doi:10.2307/3212003.
  • Chaturvedi, A. 1985. Sequential estimation of an inverse Gaussian parameter with prescribed proportional closeness. Calcutta Statistical Association Bulletin 34 (3–4):215–20. doi:10.1177/0008068319850309.
  • Chaturvedi, A. 1986. Addendum to sequential estimation of an inverse Gaussian parameter with prescribed proportional closeness. Calcutta Statistical Association Bulletin 35 (3-4):211–2. doi:10.1177/0008068319860312.
  • Chaturvedi, A., S. R. Bapat, and N. Joshi. 2019. Multi-stage point estimation of the mean of an inverse Gaussian distribution. Sequential Analysis 38 (1):1–25. doi:10.1080/07474946.2019.1574438.
  • Chaturvedi, A., S. R. Bapat, and N. Joshi. 2020a. Sequential minimum risk point estimation of the parameters of an inverse Gaussian distribution. American Journal of Mathematical and Management Sciences 39 (1):20–40. doi:10.1080/01966324.2019.1570883.
  • Chaturvedi, A., S. R. Bapat, and N. Joshi. 2020b. Purely sequential and k-stage procedures for estimating the mean of an inverse Gaussian distribution. Methodology and Computing in Applied Probability 22 (3):1193–219. doi:10.1007/s11009-019-09765-x.
  • Chaturvedi, A., S. K. Pandey, and M. Gupta. 1991. On a class of asymptotically risk-efficient sequential procedures. Scandinavian Actuarial Journal 1991 (1):87–96. doi:10.1080/03461238.1991.10557361.
  • Chhikara, R. S., and J. L. Folks. 1989. The inverse Gaussian distribution, theory, methodology and applications. New York: Marcel Dekker Inc.
  • Chow, Y. S., and H. Robbins. 1965. On the asymptotic theory of fixed width sequential confidence intervals for the mean. The Annals of Mathematical Statistics 36 (2):457–62. doi:10.1214/aoms/1177700156.
  • Dantzig, G. B. 1940. On the non-existence of tests of Student’s hypothesis having power functions independent of σ. The Annals of Mathematical Statistics 11 (2):186–92. doi:10.1214/aoms/1177731912.
  • Folks, J. L., and R. S. Chhikara. 1978. The inverse Gaussian distribution and its statistical application – A review. Journal of the Royal Statistical Society: Series B (Methodological) 40 (3):263–89. doi:10.1111/j.2517-6161.1978.tb01039.x.
  • Ghosh, M., and N. Mukhopadhyay. 1975. Asymptotic normality of stopping times in sequential analysis. Unpublished Report.
  • Hall, P. 1981. Asymptotic theory of triple sampling for sequential estimation of a mean. The Annals of Statistics 9 (6):1229–38. doi:10.1214/aos/1176345639.
  • Hall, P. 1983. Sequential estimation saving sampling operations. Journal of the Royal Statistical Society, Series B 45 (2):19–223.
  • Hu, J. 2020. Improving hall’s accelerated sequential procedure: Generalized multistage fixed-width confidence intervals for a normal mean. Methodology and Computing in Applied Probability. 10.1007/s11009-020-09786-x.
  • Johnson, N., S. Kotz, and N. Balakrishnan. 1994. Continuous univariate distributions. Vol. 1. New York: Wiley.
  • Leiva, V., H. Hernandez, and A. Sanhueza. 2008. An R package for a general class of inverse gaussian distributions. Journal of Statistical Software 26 (4):1–21. doi:10.18637/jss.v026.i04.
  • Mukhopadhyay, N. 1996. An alternative formulation of accelerated sequential procedures with applications to parametric and nonparametric estimation. Sequential Analysis 15 (4):253–69. doi:10.1080/07474949608836363.
  • Schrodinger, E. 1915. Zur Theorie der Fall und Steigversuche an Teilchen Mit Brown-Scher Bewegung. Physikalische Zeitschrift 16:289–95.
  • Seshadri, V. 1993. The inverse Gaussian distribution–A case study in exponential families. Oxford: Clarendon Press.
  • Seshadri, V. 1999. The invere Gaussian distribution, statistical theory and applications. New York: Springer.
  • Starr, N. 1966. On the asymptotic efficiency of a sequential procedure for estimating the mean. The Annals of Mathematical Statistics 37 (5):1173–85. doi:10.1214/aoms/1177699263.
  • Stein, C. 1945. A two-sample test for a linear hypothesis whose power is independent of the variance. The Annals of Mathematical Statistics 16 (3):243–58. doi:10.1214/aoms/1177731088.
  • Woodroofe, M. 1977. Second-order approximation for sequential point and interval estimation. The Annals of Statistics 5 (5):984–95. doi:10.1214/aos/1176343953.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.