281
Views
3
CrossRef citations to date
0
Altmetric
Article

A δ-shock model for reengineering of a repairable supply chain using quasi renewal process

ORCID Icon & ORCID Icon
Pages 6476-6501 | Received 16 May 2020, Accepted 03 Dec 2020, Published online: 06 Jan 2021

References

  • Abdel-Hameed, M. 1986. Optimum replacement of system subject to shocks. Journal of Applied Probability 23 (1):107–14. doi:10.1017/S002190020010631X.
  • Berger, P. D., A. Gerstenfeld, and A. Z. Zeng. 2005. The optimal use of standby suppliers: A decision-analysis approach. International Journal of Logistics Research and Applications 8 (1):67–79. doi:10.1080/13675560412331330151.
  • Bhaskaran, K., and Y. T. Leung. 1997. Manufacturing supply chain modelling and reengineering. Sadhana 22 (2):165–87. doi:10.1007/BF02744487.
  • Bozbulut, A. R., and S. Eryilmaz. 2020. Generalized extreme shock models and their applications. Communications in Statistics - Simulation and Computation 49 (1):110–20. doi:10.1080/03610918.2018.1476699.
  • Christopher, M. 2011. Managing risk in the supply chain, 10th chapter in Logistics & Supply Chain Management. 4th ed. Great Britain: Pearson.
  • Eryilmaz, S. 2012. Generalized δ-shock model via runs. Statistics & Probability Letters 82 (2):326–31. doi:10.1016/j.spl.2011.10.022.
  • Eryilmaz, S. 2017. δ-shock model based on Polya process and its optimal replacement policy. European Journal of Operational Research 263 (2):690–97. doi:10.1016/j.ejor.2017.05.049.
  • Eryilmaz, S., and C. Kan. 2019. A new shock model with a change in shock size distribution. Probability in the Engineering and Informational Sciences. Advance online publication. doi:10.1017/S0269964819000445.
  • Eryilmaz, S., and K. Bayramoglu. 2014. Life behavior of δ-shock models for uniformly distributed interarrival times. Statistical Papers 55 (3):841–52. doi:10.1007/s00362-013-0530-1.
  • Eryilmaz, S., and C. Kan. 2020. Reliability assessment for discrete time shock models via phase-type distributions. Applied Stochastic Models in Business and Industry. Advance online publication. doi:10.1002/asmb.2580.
  • Hong-Mei, J., and X. Chi. 2011. The equipment maintenance materials supply chain integration. 18th International Conference on Industrial Engineering and Engineering Management 1556–59.
  • Inoue, H., and Y. Todo. 2019. Firm-level propagation of shocks through supply-chain networks. Nature Sustainability 2 (9):841–47. doi:10.1038/s41893-019-0351-x.
  • Lam, Y. 1988. A note on the optimal replacement problem. Advances in Applied Probability 20:479–782. doi:10.2307/1427402.
  • Lam, Y. 1991. An optimal repairable replacement model for deteriorating systems. Journal of Applied Probability 28:843–51. doi:10.2307/3214687.
  • Lam, Y., and Y. L. Zhang. 2004. A shock model for the maintenance problem of a repairable system. Computers & Operations Research 31 (11):1807–20. doi:10.1016/S0305-0548(03)00121-7.
  • Liang, X., Y. Lam, and Z. Li. 2011. Optimal replacement policy for a general geometric process model with δ-shock. International Journal of Systems Science 42 (12):2021–34. doi:10.1080/00207721003706860.
  • Poursaeed, M. H. 2020. On δ-shock model in a multi-state system. Communications in Statistics - Theory and Methods 49 (7):1761–67. doi:10.1080/03610926.2019.1565784.
  • Qi, L., Z. J. M. Shen, and L. V. Snyder. 2010. The effect of supply disruptions on supply chain design decisions. Transportation Science 44 (2):274–89. doi:10.1287/trsc.1100.0320.
  • Ren, S., and C. Zhang. 2009. Study on the reliability of hot standby repairable supply system based on Markov model. Proceedings of the 6th International Conference on Service Systems and Service Management 318–22. doi:10.1109/ICSSSM.2009.5174901.
  • Ross, S. M. 1996. Stochastic Processes. New York: Wiley.
  • Shanthikumar, J. G., and U. Sumita. 1983. General shock model associated with correlated renewal sequences. Journal of Applied Probability 20 (3):600–14. doi:10.2307/3213896.
  • Tan, M., X. Bao, D. Ding, and F. Lin. 2014. δ-shock supply chain reengineering decision model under Weibull distribution. Proceedings of the 8th International Conference on Management Science and Engineering Management 749–59.
  • Thomas, M. U. 2002. Supply chain reliability for contingency operations. Proceedings of Annual Reliability and Maintainability Symposium 61–67. doi:10.1109/RAMS.2002.981621.
  • Tuncel, A., and S. Eryilmaz. 2018. System reliability under δ-shock model. Communications in Statistics - Theory and Methods 47 (19):4872–80. doi:10.1080/03610926.2018.1459708.
  • Wang, G. J., and Y. L. Zhang. 2005. A shock model with two-type failures and optimal replacement policy. International Journal of Systems Science 36 (4):209–14. doi:10.1080/00207720500032606.
  • Wang, H., and H. Pham. 1996. A quasi renewal process and its applications in imperfect maintenance. International Journal of Systems Science 27 (10):1055–62. doi:10.1080/00207729608929311.
  • Wang, H., and H. Pham. 1997. Correspondence changes to: ‘a quasi renewal process and its applications in imperfect maintenance. International Journal of Systems Science 28 (12):1329. doi:10.1080/00207729708929489.
  • Xu, W., and L. Hui. 2009. Stability analysis of supply chain system under shock load based on Bessel function. 7th IEEE International Conference on Industrial Informatics 734–39.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.