62
Views
0
CrossRef citations to date
0
Altmetric
Article

Incremental Huber-Support vector regression based online robust parameter design

, , &
Pages 2924-2944 | Received 27 Sep 2021, Accepted 17 Nov 2022, Published online: 27 Nov 2022

References

  • Balasundaram, S, and Y. Meena. 2019. Robust support vector regression in primal with asymmetric Huber loss. Neural Processing Letters 49 (3):1399–431. doi:10.1007/s11063-018-9875-8.
  • Balasundaram, S, and S. C. Prasad. 2020. Robust twin support vector regression based on Huber loss function. Neural Computing and Applications 32 (15):11285–309. doi:10.1007/s00521-019-04625-8.
  • Borah, P, and D. Gupta. 2020. Functional iterative approaches for solving support vector classification problems based on generalized Huber loss. Neural Computing and Applications 32 (13):9245–65. doi:10.1007/s00521-019-04436-x.
  • Dixon, L. C. W. 1978. The global optimization problem. An introduction. Toward Global Optimization 2:1–15.
  • Gupta, D., B. B. Hazarika, and M. Berlin. 2020. Robust regularized extreme learning machine with asymmetric Huber loss function. Neural Computing and Applications 32 (16):12971–98. doi:10.1007/s00521-020-04741-w.
  • Gupta, U, and D. Gupta. 2019. An improved regularization based Lagrangian asymmetric ν-twin support vector regression using pinball loss function. Applied Intelligence 49 (10):3606–27. doi:10.1007/s10489-019-01465-w.
  • Gupta, U, and D. Gupta. 2021a. Least squares large margin distribution machine for regression. Applied Intelligence 51 (10):7058–93. doi:10.1007/s10489-020-02166-5.
  • Gupta, U, and D. Gupta. 2021b. On regularization based twin support vector regression with Huber loss. Neural Processing Letters 53 (1):459–515. doi:10.1007/s11063-020-10380-y.
  • Hazarika, B. B., D. Gupta, and P. Borah. 2021. An intuitionistic fuzzy kernel ridge regression classifier for binary classification. Applied Soft Computing 112:107816. doi:10.1016/j.asoc.2021.107816.
  • He, Y., Z. He, D. H. Lee, K. J. Kim, L. Zhang, and X. Yang. 2017. Robust fuzzy programming method for MRO problems considering location effect, dispersion effect and model uncertainty. Computers & Industrial Engineering 105:76–83. doi:10.1016/j.cie.2016.12.021.
  • Jiang, T, and X. Zhou. 2018. Gradient/hessian-enhanced least square support vector regression. Information Processing Letters 134:1–8. doi:10.1016/j.ipl.2018.01.014.
  • Lam, C. Q. 2008. Sequential adaptive designs in computer experiments for response surface model fit [Ph.D. thesis]. The Ohio State University.
  • Lehman, J. S. 2002. Sequential design of computer experiments for robust parameter design [Ph.D. thesis]. The Ohio State University.
  • Lin, D. K, and W. Tu. 1995a. Dual response surface optimization. Journal of Quality Technology 27 (1):34–9. doi:10.1080/00224065.1995.11979556.
  • Lin, D. K. J, and W. Tu. 1995b. Dual response surface optimization. Journal of Quality Technology 27 (1):34–9. doi:10.1080/00224065.1995.11979556.
  • Ma, J., J. Theiler, and S. Perkins. 2003. Accurate on-line support vector regression. Neural Computation 15 (11):2683–703. doi:10.1162/089976603322385117.
  • Myers, R. H., D. C. Montgomery, and C. M. Anderson-Cook. 2016. Response surface methodology: Process and product optimization using designed experiments. Hoboken, New Jersey: John Wiley & Sons.
  • Ouyang, L., J. Chen, Y. Ma, C. Park, and J. Jin. 2020. Bayesian closed-loop robust process design considering model uncertainty and data quality. IISE Transactions 52 (3):288–300. doi:10.1080/24725854.2019.1636428.
  • Ouyang, L., Y. Ma, J. H. Byun, J. Wang, and Y. Tu. 2016. An interval approach to robust design with parameter uncertainty. International Journal of Production Research 54 (11):3201–15. doi:10.1080/00207543.2015.1078920.
  • Ouyang, L., S. Zhu, K. Ye, C. Park, and M. Wang. 2022. Robust Bayesian hierarchical modeling and inference using scale mixtures of normal distributions. IISE Transactions 54 (7):659–71.
  • Su, C. T. 2013. Quality engineering: Off-line methods and applications. Boca Raton: CRC press.
  • Taguchi, G. 1986. Introduction to quality engineering: Designing quality into products and processes.
  • Vanli, O. A., C. Zhang, and B. Wang. 2013. An adaptive Bayesian approach for robust parameter design with observable time series noise factors. IIE Transactions 45 (4):374–90. doi:10.1080/0740817X.2012.689123.
  • Vining, G, and R. Myers. 1990a. Combining Taguchi and response surface philosophies – a dual response approach. Journal of Quality Technology 22 (1):38–45. doi:10.1080/00224065.1990.11979204.
  • Vining, G. G, and R. H. Myers. 1990b. Combining Taguchi and response surface philosophies: A dual response approach. Journal of Quality Technology 22 (1):38–45. doi:10.1080/00224065.1990.11979204.
  • Welch, W. J. 1985. Aced: Algorithms for the construction of experimental designs. The American Statistician 39 (2):146– doi:10.2307/2682827.
  • Wu, C. J, and M. S. Hamada. 2011. Experiments: Planning, analysis, and optimization (vol. 552). Hoboken, New Jersey: John Wiley & Sons.
  • Yang, S., J. Wang, and Y. Ma. 2021. Online robust parameter design considering observable noise factors. Engineering Optimization 53 (6):1024–43. doi:10.1080/0305215X.2020.1770744.
  • Zhou, X, and T. Jiang. 2016a. Metamodel selection based on stepwise regression. Structural and Multidisciplinary Optimization 54 (3):641–57. doi:10.1007/s00158-016-1442-1.
  • Zhou, X. J, and T. Jiang. 2016b. Enhancing least square support vector regression with gradient information. Neural Processing Letters 43 (1):65–83. doi:10.1007/s11063-014-9402-5.
  • Zhou, X. J, and Y. Z. Ma. 2013. A study on SMO algorithm for solving – SVR with non-PSD kernels. Communications in Statistics – Simulation and Computation 42 (10):2175–96. doi:10.1080/03610918.2012.695843.
  • Zhou, X. J., Y. Z. Ma, and X. F. Li. 2011. Ensemble of surrogates with recursive arithmetic average. Structural and Multidisciplinary Optimization 44 (5):651–71. doi:10.1007/s00158-011-0655-6.
  • Zhou, X. J., Y. Z. Ma, Y. L. Tu, and Y. Feng. 2013. Ensemble of surrogates for dual response surface modeling in robust parameter design. Quality and Reliability Engineering International 29 (2):173–97. doi:10.1002/qre.1298.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.