82
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Uniform-in-bandwidth consistency results in the partially linear additive model components estimation

& ORCID Icon
Pages 3383-3424 | Received 19 Aug 2022, Accepted 27 Nov 2022, Published online: 12 Dec 2022

References

  • Allaoui, S., S. Bouzebda, C. Chesneau, and J. Liu. 2021. Uniform almost sure convergence and asymptotic distribution of the wavelet-based estimators of partial derivatives of multivariate density function under weak dependence. Journal of Nonparametric Statistics 33 (2):170–96. doi:10.1080/10485252.2021.1925668.
  • Allaoui, S., S. Bouzebda, and J. Liu. 2022. Multivariate wavelet estimators for weakly dependent processes: Strong consistency rate. Communications in Statistics – Theory and Methods 67 (2):1–34. doi:10.1080/03610926.2022.2061715.
  • Almanjahie, I. M., S. Bouzebda, Z. Chikr Elmezouar, and A. Laksaci. 2022a. The functional kNN estimator of the conditional expectile: Uniform consistency in number of neighbors. Statistics & Risk Modeling 38 (3–4):47–63.
  • Almanjahie, I. M., S. Bouzebda, Z. Kaid, and A. Laksaci. 2022b. Nonparametric estimation of expectile regression in functional dependent data. Journal of Nonparametric Statistics 34 (1):250–81. doi:10.1080/10485252.2022.2027412.
  • Ango-Nze, P., and R. Rios. 2000. Density estimation in L∞ norm for mixing processes. Journal of Statistical Planning and Inference 83 (1):75–90.
  • Bouzebda, S. 2012. On the strong approximation of bootstrapped empirical copula processes with applications. Mathematical Methods of Statistics 21 (3):153–88. doi:10.3103/S1066530712030015.
  • Bouzebda, S., and M. Chaouch. 2022. Uniform limit theorems for a class of conditional Z-estimators when covariates are functions. Journal of Multivariate Analysis 189:104872. doi:10.1016/j.jmva.2021.104872.
  • Bouzebda, S., and K. Chokri. 2014. Statistical tests in the partially linear additive regression models. Statistical Methodology 19:4–24. doi:10.1016/j.stamet.2014.02.001.
  • Bouzebda, S., K. Chokri, and D. Louani. 2016. Some uniform consistency results in the partially linear additive model components estimation. Communications in Statistics – Theory and Methods 45 (5):1278–310. doi:10.1080/03610926.2013.861491.
  • Bouzebda, S., and S. Didi. 2017. Additive regression model for stationary and ergodic continuous time processes. Communications in Statistics – Theory and Methods 46 (5):2454–93. doi:10.1080/03610926.2015.1048882.
  • Bouzebda, S., and T. El-Hadjali. 2020. Uniform convergence rate of the kernel regression estimator adaptive to intrinsic dimension in presence of censored data. Journal of Nonparametric Statistics 32 (4):864–914. doi:10.1080/10485252.2020.1834107.
  • Bouzebda, S., T. El-Hadjali, and A. A. Ferfache. 2022. Uniform in bandwidth consistency of conditional U-statistics adaptive to intrinsic dimension in presence of censored data. Sankhya A 2:1–45.
  • Bouzebda, S., and I. Elhattab. 2009. A strong consistency of a nonparametric estimate of entropy under random censorship. Comptes Rendus Mathematique 347 (13–14):821–6. doi:10.1016/j.crma.2009.04.021.
  • Bouzebda, S., and I. Elhattab. 2011. Uniform-in-bandwidth consistency for kernel-type estimators of Shannon’s entropy. Electronic Journal of Statistics 5:440–59.
  • Bouzebda, S., I. Elhattab, and B. Nemouchi. 2021. On the uniform-in-bandwidth consistency of the general conditional U-statistics based on the copula representation. Journal of Nonparametric Statistics 33 (2):321–58. doi:10.1080/10485252.2021.1937621.
  • Bouzebda, S., I. Elhattab, and C. T. Seck. 2018. Uniform in bandwidth consistency of nonparametric regression based on copula representation. Statistics & Probability Letters 137:173–82. doi:10.1016/j.spl.2018.01.021.
  • Bouzebda, S., and B. Nemouchi. 2019. Central limit theorems for conditional empirical and conditional U-processes of stationary mixing sequences. Mathematical Methods of Statistics 28 (3):169–207. doi:10.3103/S1066530719030013.
  • Bouzebda, S., and B. Nemouchi. 2020. Uniform consistency and uniform in bandwidth consistency for nonparametric regression estimates and conditional U-statistics involving functional data. Journal of Nonparametric Statistics 32 (2):452–509. doi:10.1080/10485252.2020.1759597.
  • Bouzebda, S., and B. Nemouchi. 2022. Weak-convergence of empirical conditional processes and conditional U-processes involving functional mixing data. Statistical Inference for Stochastic Processes 1–56.
  • Bouzebda, S., and A. Nezzal. 2022. Uniform consistency and uniform in number of neighbors consistency for nonparametric regression estimates and conditional U-statistics involving functional data. Japanese Journal of Statistics and Data Science 5 (2):431–533. doi:10.1007/s42081-022-00161-3.
  • Brunk, H. D. 1958. On the estimation of parameters restricted by inequalities. The Annals of Mathematical Statistics 29 (2):437–54. doi:10.1214/aoms/1177706621.
  • Camlong-Viot, C., J. M. Rodríguez-Póo, and P. Vieu. 2006. Nonparametric and semiparametric estimation of additive models with both discrete and continuous variables under dependence. In The art of semiparametrics, Contrib. Statist., 155–78. Physica-Verlag/Springer, Heidelberg.
  • Camlong-Viot, C., P. Sarda, and P. Vieu. 2000. Additive time series: The kernel integration method. Mathematical Methods of Statistics 9 (4):358–75.
  • Chacón, J. E., J. Montanero, and A. G. Nogales. 2007. A note on kernel density estimation at a parametric rate. Journal of Nonparametric Statistics 19 (1):13–21. doi:10.1080/10485250701262317.
  • Chamberlain, G. 1992. Efficiency bounds for semiparametric regression. Econometrica 60 (3):567–96. doi:10.2307/2951584.
  • Chen, H. 1988. Convergence rates for parametric components in a partly linear model. The Annals of Statistics 16 (1):136–46. doi:10.1214/aos/1176350695.
  • Chen, H., and J. J. H. Shiau. 1991. A two-stage spline smoothing method for partially linear models. Journal of Statistical Planning and Inference 27 (2):187–201. doi:10.1016/0378-3758(91)90015-7.
  • Chokri, K., and D. Louani. 2013. Additivity test on the nonlinear part in partially linear models. Comptes Rendus Mathematique 351 (3-4):143–8. doi:10.1016/j.crma.2013.01.016.
  • Clarkson, J. A., and C. R. Adams. 1933. On definitions of bounded variation for functions of two variables. Transactions of the American Mathematical Society 35 (4):824–54. doi:10.1090/S0002-9947-1933-1501718-2.
  • Csörgő, M., and P. Révész. 1981. Strong approximations in probability and statistics. Probability and Mathematical Statistics. New York; London: Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers].
  • Debbarh, M. 2008. Some uniform limit results in additive regression model. Communications in Statistics – Theory and Methods 37 (19):3090–114. doi:10.1080/03610920802065065.
  • Deheuvels, P. 2011. One bootstrap suffices to generate sharp uniform bounds in functional estimation. Kybernetika (Prague) 47 (6):855–65.
  • Deheuvels, P., and D. M. Mason. 2004. General asymptotic confidence bands based on kernel-type function estimators. Statistical Inference for Stochastic Processes 7 (3):225–77. doi:10.1023/B:SISP.0000049092.55534.af.
  • Derzko, G., and P. Deheuvels. 2002. Estimation non-paramétrique de la régression dichotomique—application biomédicale. Comptes Rendus Mathematique 334 (1):59–63. doi:10.1016/S1631-073X(02)02202-1.
  • Devroye, L., and L. Györfi. 1985. Nonparametric density estimation. Wiley Series in Probability and Mathematical Statistics: Tracts on Probability and Statistics. The L1 view. New York: John Wiley & Sons, Inc.
  • Devroye, L., and G. Lugosi. 2001. Combinatorial methods in density estimation. Springer Series in Statistics. Springer-Verlag, New York.
  • Didi, S., A. Al Harby, and S. Bouzebda. 2022. Wavelet density and regression estimators for functional stationary and ergodic data: Discrete time. Mathematics 10 (19):3433. doi:10.3390/math10193433.
  • Didi, S., and S. Bouzebda. 2022. Wavelet density and regression estimators for continuous time functional stationary and ergodic processes. Mathematics 10 (22):4356. doi:10.3390/math10224356.
  • Donald, S. G., and W. K. Newey. 1994. Series estimation of semilinear models. Journal of Multivariate Analysis. 50 (1):30–40. doi:10.1006/jmva.1994.1032.
  • Dudley, R. M. 2014. Uniform central limit theorems, 2nd ed., Volume 142 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, New York.
  • Einmahl, U., and D. M. Mason. 2000. An empirical process approach to the uniform consistency of kernel-type function estimators. Journal of Theoretical Probability 13 (1):1–37. doi:10.1023/A:1007769924157.
  • Einmahl, U., and D. M. Mason. 2005. Uniform in bandwidth consistency of kernel-type function estimators. The Annals of Statistics 33 (3):1380–403. doi:10.1214/009053605000000129.
  • Engle, R. F., C. W. J. Granger, J. Rice, and A. Weiss. 1986. Semiparametric estimates of the relation between weather and electricity sales. Journal of the American Statistical Association 81 (394):310–20. doi:10.1080/01621459.1986.10478274.
  • Eubank, R. L., and P. Speckman. 1990. Curve fitting by polynomial-trigonometric regression. Biometrika 77 (1):1–9. doi:10.1093/biomet/77.1.1.
  • Fan, J., and I. Gijbels. 1996. Local polynomial modelling and its applications, volume 66 of Monographs on Statistics and Applied Probability. Chapman & Hall, London.
  • Fan, J., W. Härdle, and E. Mammen. 1998. Direct estimation of low-dimensional components in additive models. The Annals of Statistics 26 (3):943–71. doi:10.1214/aos/1024691083.
  • Gao, J., and I. Gijbels. 2008. Bandwidth selection in nonparametric kernel testing. Journal of the American Statistical Association 103 (484):1584–94. doi:10.1198/016214508000000968.
  • Hall, P. 1984. Asymptotic properties of integrated square error and cross-validation for kernel estimation of a regression function. Zeitschrift fur Wahrscheinlichkeitstheorie Und Verwandte Gebiete 67 (2):175–96. doi:10.1007/BF00535267.
  • Hamilton, S. A., and Y. K. Truong. 1997. Local linear estimation in partly linear models. Journal of Multivariate Analysis 60 (1):1–19. doi:10.1006/jmva.1996.1642.
  • Härdle, W. 1990. Applied nonparametric regression, volume 19 of Econometric Society Monographs. Cambridge University Press, Cambridge.
  • Härdle, W., H. Liang, and J. Gao. 2000. Partially linear models. Contributions to Statistics. Physica-Verlag, Heidelberg.
  • Härdle, W., and J. S. Marron. 1985. Optimal bandwidth selection in nonparametric regression function estimation. The Annals of Statistics 13 (4):1465–81. doi:10.1214/aos/1176349748.
  • Hastie, T., and R. Tibshirani. 1986. Generalized additive models. Statistical Science 1 (3):297–318. With discussion. doi:10.1214/ss/1177013604.
  • Hengartner, N. W., and S. Sperlich. 2005. Rate optimal estimation with the integration method in the presence of many covariates. Journal of Multivariate Analysis 95 (2):246–72. doi:10.1016/j.jmva.2004.09.010.
  • Hobson, E. W. 1958. The theory of functions of a real variable and the theory of Fourier’s series. Vol. I. Dover Publications, Inc., New York, NY.
  • Horowitz, J. L., and V. G. Spokoiny. 2001. An adaptive, rate-optimal test of a parametric mean-regression model against a nonparametric alternative. Econometrica 69 (3):599–631. doi:10.1111/1468-0262.00207.
  • Huber, P. J. 1964. Robust estimation of a location parameter. The Annals of Mathematical Statistics 35 (1):73–101. doi:10.1214/aoms/1177703732.
  • Jones, M. C. 1995. On higher order kernels. Journal of Nonparametric Statistics 5 (2):215–21. doi:10.1080/10485259508832644.
  • Jones, M. C., S. J. Davies, and B. U. Park. 1994. Versions of kernel-type regression estimators. Journal of the American Statistical Association 89 (427):825–32. doi:10.1080/01621459.1994.10476816.
  • Jones, M. C., O. Linton, and J. P. Nielsen. 1995. A simple bias reduction method for density estimation. Biometrika 82 (2):327–38. doi:10.1093/biomet/82.2.327.
  • Jones, M. C., and D. F. Signorini. 1997. A comparison of higher-order bias kernel density estimators. Journal of the American Statistical Association 92 (439):1063–73. doi:10.1080/01621459.1997.10474062.
  • Koenker, R., and G. Bassett. Jr. 1978. Regression quantiles. Econometrica 46 (1):33–50. doi:10.2307/1913643.
  • Kosorok, M. R. 2008. Introduction to empirical processes and semiparametric inference. Springer Series in Statistics. Springer, New York.
  • Li, Q., E. Maasoumi, and J. S. Racine. 2009. A nonparametric test for equality of distributions with mixed categorical and continuous data. Journal of Econometrics 148 (2):186–200. doi:10.1016/j.jeconom.2008.10.007.
  • Liang, H., W. Härdle, and R. J. Carroll. 1999. Estimation in a semiparametric partially linear errors-in-variables model. The Annals of Statistics 27 (5):1519–35. doi:10.1214/aos/1017939140.
  • Linton, O. B., and D. T. Jacho-Chávez. 2010. On internally corrected and symmetrized kernel estimators for nonparametric regression. TEST 19 (1):166–86. doi:10.1007/s11749-009-0145-y.
  • Linton, O., and J. P. Nielsen. 1995. A kernel method of estimating structured nonparametric regression based on marginal integration. Biometrika 82 (1):93–100. doi:10.1093/biomet/82.1.93.
  • Litimein, O., A. Laksaci, B. Mechab, and S. Bouzebda. 2023. Local linear estimate of the functional expectile regression. Statistics & Probability Letters 192:109682. doi:10.1016/j.spl.2022.109682.
  • Mack, Y. P., and H.-G. Müller. 1989. Derivative estimation in nonparametric regression with random predictor variable. Sankhyā Ser. A 51 (1):59–72.
  • Maillot, B., and V. Viallon. 2009. Uniform limit laws of the logarithm for nonparametric estimators of the regression function in presence of censored data. Mathematical Methods of Statistics 18 (2):159–84. doi:10.3103/S1066530709020045.
  • Mammen, E., O. Linton, and J. Nielsen. 1999. The existence and asymptotic properties of a backfitting projection algorithm under weak conditions. The Annals of Statistics 27 (5):1443–90. doi:10.1214/aos/1017939138.
  • Manzan, S., and D. Zerom. 2005. Kernel estimation of a partially linear additive model. Statistics & Probability Letters 72 (4):313–22. doi:10.1016/j.spl.2005.02.005.
  • Mason, D. M. 2012. Proving consistency of non-standard kernel estimators. Statistical Inference for Stochastic Processes 15 (2):151–76. doi:10.1007/s11203-012-9068-4.
  • Mohammedi, M., S. Bouzebda, and A. Laksaci. 2020. On the nonparametric estimation of the functional expectile regression. Comptes Rendus. Mathématique 358 (3):267–72. doi:10.5802/crmath.27.
  • Mohammedi, M., S. Bouzebda, and A. Laksaci. 2021. The consistency and asymptotic normality of the kernel type expectile regression estimator for functional data. Journal of Multivariate Analysis. 181:104673. doi:10.1016/j.jmva.2020.104673.
  • Newey, W. K. 1994. Kernel estimation of partial means and a general variance estimator. Econometric Theory 10 (2):1–21. doi:10.1017/S0266466600008409.
  • Newey, W. K., and J. L. Powell. 1987. Asymmetric least squares estimation and testing. Econometrica 55 (4):819–47. doi:10.2307/1911031.
  • Nolan, D., and D. Pollard. 1987. U-processes: Rates of convergence. The Annals of Statistics 15 (2):780–99. doi:10.1214/aos/1176350374.
  • Opsomer, J. D., and D. Ruppert. 1997. Fitting a bivariate additive model by local polynomial regression. The Annals of Statistics 25 (1):186–211. doi:10.1214/aos/1034276626.
  • Pollard, D. 1984. Convergence of stochastic processes. Springer Series in Statistics. Springer-Verlag, New York.
  • Prakasa Rao, B. L. S. 1983. Nonparametric functional estimation. Probability and Mathematical Statistics. New York: Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers].
  • Rachdi, M., and P. Vieu. 2007. Nonparametric regression for functional data: Automatic smoothing parameter selection. Journal of Statistical Planning and Inference 137 (9):2784–801. doi:10.1016/j.jspi.2006.10.001.
  • Rice, J. 1986. Convergence rates for partially splined models. Statistics & Probability Letters 4 (4):203–8. doi:10.1016/0167-7152(86)90067-2.
  • Robinson, P. M. 1988. Root-N-consistent semiparametric regression. Econometrica 56 (4):931–54. doi:10.2307/1912705.
  • Scott, D. W. 1992. Multivariate density estimation. Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics. John Wiley & Sons, Inc., New York. Theory, practice, and visualization, A Wiley-Interscience Publication.
  • Severini, T. A., and J. G. Staniswalis. 1994. Quasi-likelihood estimation in semiparametric models. Journal of the American Statistical Association 89 (426):501–11. doi:10.1080/01621459.1994.10476774.
  • Shang, H. L. 2014. Bayesian bandwidth estimation for a functional nonparametric regression model with mixed types of regressors and unknown error density. Journal of Nonparametric Statistics 26 (3):599–615. doi:10.1080/10485252.2014.916806.
  • Shen, J., and Y. Xie. 2013. Strong consistency of the internal estimator of nonparametric regression with dependent data. Statistics & Probability Letters 83 (8):1915–25. doi:10.1016/j.spl.2013.04.027.
  • Shi, P. D., and G. Y. Li. 1995a. Asymptotic normality of the M-estimators for parametric components in partly linear models. Northeastern Mathematical Journal 11 (2):127–38.
  • Shi, P. D., and G. Y. Li. 1995b. A note on the convergent rates of M-estimates for a partly linear model. Statistics 26 (1):27–47. doi:10.1080/02331889508802465.
  • Silverman, B. W. 1986. Density estimation for statistics and data analysis. Monographs on Statistics and Applied Probability. London: Chapman & Hall.
  • Speckman, P. 1988. Kernel smoothing in partial linear models. Journal of the Royal Statistical Society: Series B (Methodological) 50 (3):413–36. doi:10.1111/j.2517-6161.1988.tb01738.x.
  • Sperlich, S., O. B. Linton, and W. Härdle. 1999. Integration and backfitting methods in additive models – finite sample properties and comparison. Test 8 (2):419–58. doi:10.1007/BF02595879.
  • Stone, C. J. 1985. Additive regression and other nonparametric models. The Annals of Statistics 13 (2):689–705. doi:10.1214/aos/1176349548.
  • Stone, C. J. 1986. The dimensionality reduction principle for generalized additive models. The Annals of Statistics 14 (2):590–606. doi:10.1214/aos/1176349940.
  • Stute, W. 1984. The oscillation behavior of empirical processes: The multivariate case. The Annals of Probability 12 (2):361–79. doi:10.1214/aop/1176993295.
  • Stute, W. 1986. Conditional empirical processes. The Annals of Statistics 14 (2):638–47. doi:10.1214/aos/1176349943.
  • Tjøstheim, D., and B. R. H. Auestad. 1994. Nonparametric identification of nonlinear time series: Projections. Journal of the American Statistical Association 89 (428):1398–409.
  • van der Vaart, A. W. 1998. Asymptotic statistics, volume 3 of Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge: Cambridge University Press.
  • van der Vaart, A. W., and J. A. Wellner. 1996. Weak convergence and empirical processes. Springer Series in Statistics. New York: Springer-Verlag, With applications to statistics.
  • Vituškin, A. G. 1955. O mnogomernyh variaciyah. Gosudarstv. Izdat. Moscow: Tehn.-Teor. Lit.
  • Wand, M. P., and M. C. Jones. 1995. Kernel smoothing, volume 60 of Monographs on Statistics and Applied Probability. Chapman and Hall, Ltd., London.
  • Yu, K., E. Mammen, and B. U. Park. 2011. Semi-parametric regression: Efficiency gains from modeling the nonparametric part. Bernoulli 17 (2):736–48. doi:10.3150/10-BEJ296.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.