Publication Cover
Hemoglobin
international journal for hemoglobin research
Volume 32, 2008 - Issue 6
51
Views
5
CrossRef citations to date
0
Altmetric
Original Article

The 5′ Regulatory Region of the Human Fetal Globin Genes is a Gene Conversion Hotspot

, , , , , , & show all
Pages 572-581 | Received 02 Apr 2008, Accepted 06 Jun 2008, Published online: 07 Jul 2009

REFERENCES

  • Chen JM, Cooper DN, Chuzhanova N, Ferec C, Patrinos GP. Gene conversion: Mechanisms, evolution and human disease. Nat Rev Genet 2007; 8(11)762–775
  • Klein HL, Petes TD. Intrachromosomal gene conversion in yeast. Nature 1981; 289(5794)144–148
  • Slightom JL, Blechi AE, Smithies O. Human fetal Gγ- and Aγ-globin genes: Complete nucleotide sequences suggest that DNA can be exchanged between these duplicated genes. Cell 1980; 21(3)627–638
  • Shen S, Slightom JL, Smithies O. A history of the human fetal globin gene duplication. Cell 1981; 26(2 Part 2)191–203
  • Fitch DH, Bailey WJ, Tagle DA, Goodman M, Sieu L, Slightom JL. Duplication of the γ-globin gene mediated by L1 long interspersed repetitive elements in an early ancestor of simian primates. Proc Natl Acad Sci USA 1991; 88(16)7396–7400
  • Smithies O, Engels WR, Devereux JR, Slightom JL, Shen S. Base substitutions, length differences and DNA strand asymmetries in the human Gγ and Aγ fetal globin gene region. Cell 1981; 26(3 Part 1)345–353
  • Michelson AM, Orkin SH. Boundaries of gene conversion within the duplicated human α-globin genes. Concerted evolution by segmental recombination. J Biol Chem. 1983; 258(24)15245–15254
  • Papadakis MN, Patrinos GP. Contribution of gene conversion in the evolution of the human β-like globin genes family. Hum Genet 1999; 104(2)117–125
  • de Vooght KM, van Wijk R, Ploos van Amstel HK, van Solinge WW. Characterization of the −16C > G sequence variation in the promoters of both HBG1 and HBG2: convergent evolution of the human γ-globin genes. Blood Cells Mol Dis 2007; 39(1)70–74
  • Efremov DG, Dimovski AJ, Huisman THJ. The −158 (C→T) promoter mutation is responsible for the increased transcription of the 3′ γ gene in the Atlanta type of hereditary persistence of fetal hemoglobin. Blood 1994; 83(11)3350–3355
  • Patrinos GP, Kollia P, Loutradi-Anagnostou A, Loukopoulos D, Papadakis MN. The Cretan type of the non-deletional hereditary persistence of fetal hemoglobin (Gγ −158 C > T) results from two independent gene conversion events. Hum Genet 1998; 102(6)629–634
  • Patrinos GP, Loutradi-Anagnostou A, Papadakis MN. A novel DNA polymorphism of the human Aγ-globin gene (Aγ −588, A→G) is linked with the XmnI polymorphism (Gγ −158, C→T). Hemoglobin 1995; 19(6)419–423
  • Losekoot M, Fodde R, Harteveld CL, van Heeren H, Giordano PC, Bernini LF. Denaturing gradient gel electrophoresis and direct sequencing of PCR amplified genomic DNA: A rapid and reliable diagnostic approach to β thalassemia. Br J Haematol 1990; 76(2)269–274
  • Craig JE, Barnetson RA, Prior J, Raven JL, Thein SL. Rapid detection of deletions causing δβ thalassemia and hereditary persistence of fetal hemoglobin by enzymatic amplification. Blood 1994; 83(6)1673–1682
  • Samara M, Chiotoglou I, Kalamaras A, Likousi S, et al. Large-scale population genetic analysis for hemoglobinopathies reveals different mutation spectra in central Greece compared to the rest of the country. Am J Hematol 2007; 82(7)634–636
  • Patrinos GP, Kollia P, Papapanagiotou E, Loutradi-Anagnostou A, Loukopoulos D, Papadakis MN. Aγ-haplotypes: a new group of genetic markers for thalassemic mutations inside the 5′ regulatory region of the human Aγ-globin gene. Am J Hematol 2001; 66(2)99–104
  • Lanclos KD, Oner C, Dimovski AJ, Gu Y-C, Huisman THJ. Sequence variations in the 5′ flanking and IVS-II regions of the Gγ- and Aγ-globin genes of βS chromosomes with five different haplotypes. Blood 1991; 77(11)2488–2496
  • Patrinos GP, Loutradi-Anagnostou A, Papadakis MN. A new base substitution in the 5′ regulatory region of the human Aγ globin gene is linked with the βS gene. Hum Genet 1996; 97(3)357–358
  • Patrinos GP, Samperi P, Lo Nigro L, Kollia P, Schiliro G, Papadakis MN. Evidence for the molecular heterogeneity of sickle cell anemia chromosomes bearing the βS/Benin haplotype. Am J Hematol 2005; 80(1)79–80
  • http://globin.bx.psu.edu/hbvat, Hardison RC, Chui DHK, Giardine B et al. HbVar: A relational database of human hemoglobin variants and thalassemia mutations at the globin gene server. Hum Mutat. 2002; 19(3):225–233
  • http://globin.bx.psu.edu/hbvat, Patrinos GP, Giardine B, Riemer C et al. Improvements in the HbVar database of human hemoglobin variants and thalassemia mutations for population and sequence variation studies. Nucleic Acids Res. 2004; 32(Database issue):D537–D541
  • http//globin.cse.psu.edu, Patrinos GP, Wajcman H. Recording human globin gene variation. Hemoglobin. 2004; 28(2):v–vii
  • http://globin.bx.psu.eud/hbvat, Giardine B, van Baal S, Kaimakis P et al. HbVar database of human hemoglobin variants and thalassemia mutations: 2007 update. Hum Mutat. 2007; 28(2):206
  • Papadakis MN, Patrinos GP, Tsaftaridis P, Loutradi-Anagnostou A. A comparative study of Greek non-deletional hereditary persistence of fetal hemoglobin and β-thalassemia compound heterozygotes. J Mol Med 2002; 80(4)243–247

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.