Publication Cover
Hemoglobin
international journal for hemoglobin research
Volume 44, 2020 - Issue 2
133
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

In Silico Analysis of the Effects of Point Mutations on α-Globin: Implications for α-Thalassemia

& ORCID Icon
Pages 89-103 | Received 22 Nov 2019, Accepted 22 Feb 2020, Published online: 18 May 2020

References

  • Thom CS, Dickson CF, Gell DA, et al. Hemoglobin variants: biochemical properties and clinical correlates. Cold Spring Harb Perspect Med. 2013;3(3):a011858.
  • Liebhaber SA, Cash FE, Ballas SK. Human α-globin gene expression. the dominant role of the α2-locus in mRNA and protein synthesis. J Biol Chem. 1986;261(32):15327–15333.
  • Liebhaber SA, Kan YW. Different rates of mRNA translation balance the expression of the two human α-globin loci. J Biol Chem. 1982;257(20):11852–11855.
  • Akhavan-Niaki H, Youssefi Kamangari R, Banihashemi A, et al. Hematologic features of α-thalassemia carriers. Int J Mol Cell Med. 2012;1(3):162–167.
  • Harteveld CL, Higgs DR. α-Thalassaemia. Orphanet J Rare Dis. 2010;5(1):13.
  • Chui DH, Fucharoen S, Chan V. Hemoglobin H disease: not necessarily a benign disorder. Blood. 2003;101(3):791–800.
  • Fucharoen S, Viprakasit V. Hb H disease: clinical course and disease modifiers. Hematology Am Soc Hematol Educ Program. 2009;2009(1):26–34.
  • Trainor B, Tubman R. The emerging pattern of hydrops fetalis-incidence, aetiology and management. Ulster Med J. 2006;75(3):185–186.
  • Nakayama H, Kukita J, Hikino S, et al. Long-term outcome of 51 liveborn neonates with non-immune hydrops fetalis. Acta Paediatr. 2007;88(1):24–28.
  • Yue P, Li Z, Moult J. Loss of protein structure stability as a major causative factor in monogenic disease. J Mol Biol. 2005;353(2):459–473.
  • Mollan TL, Yu X, Weiss MJ, et al. The role of α-hemoglobin stabilizing protein in redox chemistry, denaturation, and hemoglobin assembly. Antioxid Redox Signal. 2010;12(2):219–231.
  • Feng L, Gell DA, Zhou S, et al. Molecular mechanism of AHSP-mediated stabilization of α-hemoglobin. Cell. 2004;119(5):629–640.
  • Hardison RC, Chui DHK, Giardine B, et al. HbVar: a relational database of human hemoglobin variants and thalassemia mutations at the globin gene server. Hum Mutat. 2002;19(3):225–233 (http://globin.cse.psu.edu).
  • Patrinos GP, Giardine B, Riemer C, et al. Improvements in the HbVar database of human hemoglobin variants and thalassemia mutations for population and sequence variation studies. Nucleic Acids Res. 2004;32(Database issue):D537–D541 (http://globin.cse.psu.edu).
  • Bendl J, Stourac J, Salanda O, et al. PredictSNP: robust and accurate consensus classifier for prediction of disease-related mutations. PLoS Comput Biol. 2014;10(1):e1003440.
  • Kister J, Prehu C, Riou J, et al. Two hemoglobin variants with an alteration of the oxygen-linked chloride binding: Hb Antananarivo [α1(NA1)Val→Gly] and Hb Barbizon [β144(HC1)Lys→Met]. Hemoglobin. 1999;23(1):21–32.
  • Zeng YT, Huang SZ, Qiu XK, et al. Hemoglobin Chongqing [α2(NA2)Leu→Arg] and and Hemoglobin Harbin [α16(A14)Lys→Met] found in China. Hemoglobin. 1984;8(6):569–581.
  • Ahmad A, Naqvi S, Ehsanullah S, et al. Abnormal hemoglobins 11-Hb (Karachi), an α chain abnormality at position 5 Ala→Pro. J Pak Med Assoc. 1986;36(8):206–208.
  • Moo-Penn WF, Jue DL, Johnson MH, et al. Hemoglobin Swan River [α6(A4)Asp→Gly]. Hemoglobin. 1987;11(1):61–62.
  • Wajcman H, Bost M, Blouquit Y, et al. Two new α chain variants found during glycated hemoglobin screening. Hb Tatras [α7(A5)Lys→Asn] and Hb Lisbon [α23(B4)Glu→Asp], Hemoglobin. 1994;18(6):427–432.
  • Hoyer JD, McCormick DJ, Snow K, et al. Four new variants of the α2-globin gene without clinical or hematologic effects: Hb Park Ridge [α9(alpha7)Asn→Lys (α2)], Hb Norton [α72(EF1)His→Asp (α2)], Hb Lombard [α103(G10)His→Tyr (α2)], and Hb San Antonio [α113(GH2)Leu→Arg (α2)]. Hemoglobin. 2002;26(2):175–179.
  • Zeng YT, Huang SZ, Xu L, et al. Hb Wuming or α211(A9)Lys→Gln β2. Hemoglobin. 1981;5(7-8):679–687.
  • Dash S, Huisman T. First observation of Hemoglobin J Paris I [alpha-2-12(A10)alanine-aspartic acid-beta-2] in the Indian subcontinent. Acta Haematol. 1988;79(2):117–117.
  • Moo-Penn WF, Baine RM, Jue DL, et al. Hemoglobin Evanston: α14(A12)Trp→Arg. A variant hemoglobin associated with α-thalassemia-2. Biochim Biophys Acta. 1983;747(1-2):65–70.
  • Turbpaiboon C, Svasti S, Sawangareetakul P, et al. Hb Siam [α15(A13)Gly→Arg (α1) (GGT→CGT)] is a typical α chain hemoglobinopathy without an α-thalassemic effect. Hemoglobin. 2002;26(1):77–81.
  • Abbes S, M'rad A, Fitzgerald PA, et al. Hb Al-Ain Abu Dhabi [α18(A16)Gly→Asp]: a new hemoglobin variant discovered in an Emiratee family. Hemoglobin. 1992;16(5):355–362.
  • Li HJ, Liu DX, Liu ZG, et al. A new fast-moving hemoglobin variant, Hb J-Tashikuergan α19(AB1)Ala→Glu. Hemoglobin. 1984;8(4):391–395.
  • Cotton F, Wajcman H, Hansen V, et al. Hb Anderlecht [α20(B1)His→Pro]: a silent variant found in a Congolese newborn. Hemoglobin. 2000;24(4):299–304.
  • Brennan SO, Chan T, Ryken S, et al. A second case of Hb Fontainebleau [α21(B2)Ala→Pro] in an individual with microcytosis. Hemoglobin. 2009;33(3-4):258–261.
  • Groff P, Galacteros F, Kalmes G, et al. Hb Luxembourg [α24(B5)Tyr→His]: a new unstable variant. Hemoglobin. 1989;13(5):429–436.
  • Wenning MR, Silva NM, Jorge SB, et al. Hb Campinas [α26(B7)Ala→Val]: a novel, electrophoretically silent, variant. Hemoglobin. 2000;24(2):143–148.
  • Shih HC, Shih MC, Chang YC, et al. Hb Hekinan in a Taiwanese subject: a G→T substitution at codon 27 of the α1-globin gene abolishes an HaeIII site. Hemoglobin. 2007;31(4):495–498.
  • de la Fuente-Gonzalo F, Baiget M, Badell I, et al. The Erythropathology Spanish Group. Study of three families with Hb Agrinio [α29(B10)Leu→Pro, CTG > CCG (α2)] in. The Spanish Population: three Homozygous Cases. Hemoglobin. 2012;36(6):526–532.
  • Vettore L, De Sandre G, Di IEE, et al. A new abnormal Hemoglobin O Padova, α30(B11)Glu→Lys, and a dyserythropoietic anemia with erythroblastic multinuclearity coexisting in the same patient. Blood. 1974;44(6):869–877.
  • De Marco EV, Crescibene L, Pasqua A, et al. Hb Prato [α31(B12)Arg→Ser] in a Calabrian family. Hemoglobin. 1992;16(4):275–279.
  • Prehu C, Mazurier E, Riou J, et al. A new unstable α2-globin gene variant: Hb Chartres [α33(B14)Phe→Ser]. Hemoglobin. 2003;27(2):111–115.
  • Moo-Penn WF, Jue DL, Johnson MH, et al. Hemoglobin Queens: α34(B15)Leu→Arg structural and functional properties and its association with Hb E. Am J Hematol. 1982;13(4):323–327.
  • Yongsuwan S, Svasti J, Fucharoen S. Decreased heat stability found in purified Hemoglobin Queens [α34(B15)Leu→Arg]. Hemoglobin. 1987;11(6):567–570.
  • Zeng YT, Huang SZ, Yen YK, et al. Hemoglobin Queens (α34(B15)Leu→Arg) found in two Chinese families. Hemoglobin. 1982;6(2):209–211.
  • Gomes S, Picanco I, Miranda A, et al. Hb Evora [α235(B16)Ser→Pro], a novel hemoglobin variant associated with an α-thalassemia phenotype. Haematologica. 2007;92(2):252–253.
  • Brennan SO, Sheen C, Johnson S. Hb Manawatu [α37(C2)Pro→Leu]: a new mildly unstable mutation at an invariant proline residue. Hemoglobin. 2002;26(4):389–392.
  • Harano T, Harano K, Shibata S, et al. Hemoglobin Kariya [α40(C5)Lys→Glu]: a new hemoglobin variant with an increased oxygen affinity. FEBS Lett. 1983;153(2):332–334.
  • Ohba Y, Imai K, Uenaka R, et al. Hb Miyano or α41(C6)Thr→Ser: a new high oxygen affinity α chain variant found in an erythremic blood donor. Hemoglobin. 1989;13(7-8):637–647.
  • Prehu C, Riou J, Wajcman H. Hb Barika [α42(C7)Tyr→His (α2)] leads to an α+-thalassemia-like syndrome. Hemoglobin. 2007;31(1):17–22.
  • Beretta A, Prato V, Gallo E, et al. Haemoglobin Torino--alpha-43 (CD1) Phenylalanine replaced by Valine. Nature. 1968;217(5133):1016–1018.
  • Harano T, Harano K, Ueda S, et al. Hemoglobin Kawachi [α44(CE2)Pro→Arg]: a new hemoglobin variant of high oxygen affinity with amino acid substitution at α1β2 contact. Hemoglobin. 1982;6(1):43–49.
  • Bardakdjian J, Kister J, Wajcman H, et al. Hb Poitiers [α45(CE3)His→Asp]: a new hemoglobin variant with a two-fold increase in oxygen affinity. Hemoglobin. 1994;18(1):1–9.
  • Babb A, Solaiman S, Green BN, et al. Hb Hillingdon [α46(CE4)Phe→Val (α1 or α2)]: a new α chain hemoglobin variant. Hemoglobin. 2009;33(6):503–506.
  • Nakatsuji T, Wilson JB, Huisman T. Hb Cordele α247(CE5)Asp→Alaβ2. A mildly unstable variant observed in Black twins. Hemoglobin. 1984;8(1):37–46.
  • Brimhall B, Jones RT, Schneider RG, et al. Two new hemoglobins. Hemoglobin Alabama (β39(C5)Gln→Lys) and Hemoglobin Montgomery (α48(CD6)Leu→Arg). Biochim Biophys Acta. 1975;379(1):28–32.
  • Szelenyi JG, Horanyi M, Foldi J, et al. A new hemoblogin variant in Hungary: Hb Savaria – α49(CE7)Ser→Arg. Hemoglobin. 1980;4(1):27–38.
  • Gallo E, Pugliatti L, Ricco G, et al. A case of Haemoglobin J Sardegna--thalassaemia double heterozygosis. Acta Haematol. 1972;47(5):311–320.
  • Moradkhani K, Prehu C, Old J, et al. Mutations in the paralogous human α-globin genes yielding identical hemoglobin variants. Ann Hematol. 2009;88(6):535–543.
  • Reynolds CA, Huisman T. Hemoglobin Russ or α251-arg-β2. Biochim Biophys Acta. 1966;130(2):541–543.
  • Huisman THJ, Sydenstricker VP. Difference in gross structure of two electrophoretically identical ‘minor’ haemoglobin components. Nature. 1962;193(4814):489–491.
  • Alberti R, Mariuzzi GM, Artibani L, et al. A new haemoglobin variant: J-Rovigo α53(E-2)Alanine→Aspartic acid. Biochim Biophys Acta. 1974;342(1):1–4.
  • Imai K, Morimoto H, Kotani M, et al. Studies on the function of abnormal hemoglobins. II. Oxygen equilibrium of abnormal hemoglobins: Shimonoseki, Ube II, Hikari, Gifu, and Agenogi. Biochim Biophys Acta. 1970;200(2):197–202.
  • Lacan P, Aubry M, Couprie N, et al. Hb Gerland [α55(E4)Val→Ala (α2)]: a new neutral α chain variant involving the α2 gene. Hemoglobin. 2001;25(4):417–420.
  • Abramov A, Lehmann H, Robb L. Hb Shaare Zedek (α56 E5 Lys→Glu). FEBS Lett. 1980;113(2):235–237.
  • Mehrotra TN, Gupta SC, Sinha R. Haemoglobin Norfolk in Nepali Gorkhas. Humangenetik. 1975;27(4):347–349.
  • Pulsinelli PD, Perutz MF, Nagel RL. Structure of Memoglobin M Boston, a variant with a five-coordinated ferric heme. Proc Natl Acad Sci USA. 1973;70(12):3870–3874.
  • Dutly F, Fehr J, Goede JS, et al. A new highly unstable α chain variant causing α+-thalassemia: Hb Zurich Albisrieden [α59(E8)Gly→Arg (α2)]. Hemoglobin. 2004;28(4):347–351.
  • Spivak VA, Molchanova TP, Ermakov NV, et al. A new hemoglobin variant: Hb Dagestan α60(E9)Lys→Glu. Hemoglobin. 1981;5(2):133–138.
  • Giordano PC, Fodde R, Anions R, et al. Hb J-Anatolia [α61(E10)Lys→Thr]: structural characterization and gene localization of a new α chain variant. Hemoglobin. 1990;14(2):119–128.
  • Wilson JB, Webber BB, Kutlar A, et al. Hb Evans or α262(E11)Val→Metβ2; an unstable hemoglobin causing a mild hemolytic anemia. Hemoglobin. 1989;13(6):557–566.
  • Thillet J, Blouquit Y, Perrone F, et al. Hemoglobin Pontoise α63Ala→Asp(E12). A new fast moving variant. Biochim Biophys Acta. 1977;491(1):16–22.
  • Zhou ZQ, Chen LC, Chen PF, et al. Hemoglobin Hangzhou α64(E13)Asp→Gly. A new variant found in China. Hemoglobin. 1987;11(1):31–33.
  • Lacan P, Becchi M, Zanella-Cleon I, et al. Two new α chain variants: Hb Part-Dieu [α65(E14)Ala→Thr (α2)] and Hb Decines-Charpieu [α69(E18)Ala→Thr (α2)]. Hemoglobin. 2004;28(1):51–57.
  • Farashi S, Faramarzi Garous N, Ashki M, et al. Hb Dartmouth (HBA2: c.200T > C): an α2-globin gene associated with Hb H disease in one homozygous patient. Hemoglobin. 2015;39(3):152–155.
  • Kaufmann JO, Phylipsen M, Neven C, et al. Hb St. Truiden [α68(E17)Asn→His] and Hb Westeinde [α125(H8)Leu→Gln]: two new abnormalities of the α2-globin gene. Hemoglobin. 2010;34(5):439–444.
  • Ferranti P, Parlapiano A, Malorni A, et al. Hemoglobin Ozieri: a new α-chain variant (α71(E20)Ala→Val). Characterization using FAB- and electrospray-mass spectrometric techniques. Biochim Biophys Acta. 1993;1162(1–2):203–208.
  • Djoumessi S, Rousseaux J, Descamps J, et al. Hemoglobin Lille. α2 [74(EF3) Asp replaced by Ala] β2. Hemoglobin. 1981;5(5):475–479.
  • Burnichon N, Lacan P, Becchi M, et al. A new α chain hemoglobin variant: Hb Al-Hammadi Riyadh [α75(EF4)Asp→Val (α2)]. Hemoglobin. 2006;30(2):155–164.
  • Shelton JB, Shelton JR, Schroeder WA, et al. Hb Aztec or α276(EF5)Met→Thrβ2 detection of a silent mutant by high performance liquid chromatography. Hemoglobin. 1985;9(4):325–332.
  • Badens C, Lena-Russo D, Lacan P, et al. Hb Toulon [α77(EF6)Pro→His]: a new variant due to a mutation in the α2 gene found during measurement of glycated hemoglobin. Hemoglobin. 1999;23(4):367–371.
  • Wilson JB, Webber BB, Plaseska D, et al. Hb Davenport or α278(EF7)Asn→Hisβ2. Hemoglobin. 1990;14(6):599–605.
  • Wajcman H, Blouquit Y, Lahary A, et al. Three new neutral α chain variants: Hb Bois Guillaume [α65(E14(Ala→Val], Hb Mantes-la-Jolie [α79(EF8)Ala→Thr], and Hb Mosella [α111(G18)Ala→Thr]. Hemoglobin. 1995;19(5):281–286.
  • Adams JG, 3rd, Winter WP, Rucknagel DL, et al. Biosynthesis of Hemoglobin Ann Arbor: evidence for catabolic and feedback regulation. Science. 1972;176(4042):1427–1429.
  • Lacan P, Moreau M, Becchi M, et al. Two new hemoglobin variants: Hb Brem-sur-Mer [β9(A6)Ser→Tyr] and Hb Passy [α81(F2)Ser→Pro (α2)]. Hemoglobin. 2005;29(1):69–75.
  • Wajcman H, Prome D, Prehu C, et al. Hb Les Andelys [α83(F4)Leu→Pro]: a new moderately unstable variant. Hemoglobin. 1998;22(2):129–140.
  • Crookston JH, Farquharson HA, Beale D, et al. Hemoglobin Etobicoke: α-84(F5) serine replaced by arginine. Can J Biochem. 1969;47(2):143–146.
  • Fujiwara N, Maekawa T, Matsuda G. Hemoglobin Atago (α2-85Tyr β2) a new abnormal human hemoglobin found in Nagasaki. Biochemical studies on hemoglobins and myoglobins. VI. Int J Protein Res. 2009;3(1-4):35–39.
  • Knuth A, Pribilla W, Mart HR, et al. Hemoglobin Moabit: α86(F7)Leu→Arg: a new unstable abnormal hemoglobin. Acta Haematol. 1979;61(3):121–124.
  • Nishikura N, Sugita Y, Nagai M, et al. Milwaukee-I in half-ferric and fully reduced states. J Biol Chem. 1975;250(17):6679–6685.
  • Perry MC, Head C, Fairbanks VF, et al. Hemoglobin Columbia Missouri or α2 [88(F9)Ala→Val]β2: a new high-oxygen-affinity hemoglobin that causes erythrocytosis. Mayo Clin Proc. 1991;66(1):5–10.
  • Williamson D, Langdown JV, Myles T, et al. Polycythaemia and microcytosis arising from the combination of a new high oxygen affinity haemoglobin (Hb luton, α89 His→Leu) and α thalassaemia trait. Br J Haematol. 1992;82(3):621–622.
  • Villegas A, Hojas R, Gonzalez FA, et al. Hb Clinico-Madrid II [α90(FG2)Lys→Arg (α1)] and Hb El Escorial [α96(G3)Val→Asp (→2)]: two new α chain variants found during a neonatal period study. Hemoglobin. 2003;27(3):185–190.
  • Villegas A, Hojas R, Noguera N, et al. Hb Clinico-Madrid [α90(FG2)Lys→Arg]: a new hemoglobin mutation in the α2-globin gene. Hemoglobin. 2000;24(4):341–345.
  • Brennan SO, Tauro GP, Melrose W, et al. Haemoglobin Port Phillip α91 (FG3) Leu→Pro, a new unstable haemoglobin. FEBS Lett. 1977;81(1):115–117.
  • Botha MC, Stathopoulou R, Lehmann H, et al. A Hb J Cape Town homozygote--association of Hb J Cape Town and α-thalassaemia. FEBS Lett. 1978;96(2):331–334.
  • Lacerra G, Testa R, De Angioletti M, et al. Hb Bronte or α93(FG5)Val→Gly: a new unstable variant of the α2-globin gene, associated with a mild α+-thalassemia phenotype. Hemoglobin. 2003;27(3):149–159.
  • Luo HY, Irving I, Prior J, et al. Hemoglobin Titusville, a low oxygen affinity variant hemoglobin, in a family of Northern European background. Am J Hematol. 2004;77(4):384–386.
  • Das Gupta A, Hariharan P, Daruwalla M, et al. Hemoglobin Titusville [α2 codon 94 G > A]: a rare α globin chain variant causing low oxygen saturation. Indian J Hematol Blood Transfus. 2019;35(3):593–595.
  • de Jong WWW, Bernini LF, Meera Khan P. Haemoglobin Rampa: α95 Pro→Ser. Biochim Biophys Acta. 1971;236(1):197–200.
  • Hoyer JD, Rachut E, Kubik KS, et al. Hb Rampa [α95(G2)Pro→Ser (α2)] in a family of European ancestry: DNA analysis confirms the CCG→TCG mutation at codon 95 of the α2-globin gene; clinical and laboratory features. Hemoglobin. 2002;26(4):397–403.
  • Harano T, Harano K, Uehara S, et al. Two new α chain variants: Hb Fuchu-I [α72(EF1)His→Tyr] and Hb Fuchu-II [α97(G4)Asn→His]. Hemoglobin. 1995;19(6):389–395.
  • Son R, Higuchi T, Mizuno A, et al. A newly characterized hemoglobin variant with a high oxygen affinity, Hb Fuchu-II, presenting with acute myocardial infarction. Intern Med. 2016;55(3):285–287.
  • Langdorm JV, Davidson RJL, Williamson D. A new α chain variant, Hb Turriff [α99(G6)Lys→Glu]: the interference of abnormal hemoglobins in Hb A1c determination. Hemoglobin. 1992;16(1–2):11–17.
  • Crookston JH, Farquharson HA, Kinderlerer JL, et al. Hemoglobin Manitoba, α102 (G9) serine replaced by arginine. Can J Biochem. 1970;48(8):911–914.
  • Sciarratta GV, Ivaldi G, Molaro GL, et al. The characterization of Hemoglobin Manitoba or α2102(G9)Ser→Argβ2 and Hemoglobin Contaldo or α2103(G10)His→Argβ2 by high performance liquid chromatography. Hemoglobin. 1984;8(2):169–181.
  • Khan SN, Butt FI, Riazuddin S, et al. Hb Sallanches [α104(G11)Cys→Tyr]: a rare α2-globin chain variant found in the homozygous state in three members of a Pakistani family. Hemoglobin. 2000;24(1):31–35.
  • Morle F, Francina A, Ducrocq R, et al. A new α chain variant Hb Sallanches [α2 104(G11) Cys→Tyr] associated with Hb H disease in one homozygous patient. Br J Haematol. 1995;91(3):608–611.
  • Harteveld CL, Versteegh FGA, Kok P, et al. Hb Bleuland [α108(G15)Thr→Asn, ACC→AAC (alpha2)]: a new abnormal hemoglobin associated with a mild α-thalassemia phenotype. Hemoglobin. 2006;30(3):349–354.
  • Weiss I, Cash FE, Coleman MB, et al. Molecular basis for α-thalassemia associated with the structural mutant Hemoglobin Suan-Dok (α2 109Leu→Arg). Blood. 1990;76(12):2630–2636.
  • Honig GR, Shamsuddin M, Zaizov R, et al. Hemoglobin Petah Tikva (α110 Ala replaced by Asp): a new unstable variant with α-thalassemia-like expression. Blood. 1981;57(4):705–711.
  • Kazanetz EG, Leonova JY, Wilson JB, et al. Hb Anamosa or α2111(G18)Ala→Valβ2 (α2 mutation) and Hb Mulhacen or α2123(H6)Ala→Serβ2 (α1 mutation) are two silent, stable variants detected by sequencing of amplified DNA. Hemoglobin. 1995;19(1–2):1–6.
  • Ayala S, Colomer D, Pujades A, et al. Haemoglobin Lleida: a new α2-globin variant (12 bp deletion) with mild thalassaemic phenotype. Br J Haematol. 1996;94(4):639–644.
  • Guis M, Mentzer WC, Jue DL, et al. Hemoglobin Twin Peaks α113(GH1)Leu→His. Hemoglobin. 1985;9(2):175–177.
  • Wajcman H, Delaunay J, Francina A, et al. Hemoglobin Nouakchott [α114(GH2)Pro→Leu]: a new hemoglobin variant displaying an unusual increase in hydrophobicity. Biochim Biophys Acta. 1989;998(1):25–31.
  • Gajdusek DC, Guiart J, Kirk RL, et al. Haemoglobin J Tongariki (α-115 alanine→aspartic acid): the first new haemoglobin variant found in a Pacific (Melanesian) population. J Med Genet. 1967;4(1):1–6.
  • Schneider RG, Hightower B, Carpentieri U, et al. Hemoglobin Oleander [α2116(GH4)GLU→GLNβ2]: structural and functional characterization. Hemoglobin. 1982;6(5):465–480.
  • Harano T, Harano K, Imai K, et al. Hb J-Meerut [α120(H3)Ala→Glu] found in a Japanese family. Hemoglobin. 1989;13(2):169–175.
  • Harano T, Harano K, Ueda S. Hb Owari [α121(H4)Val→Met]: a new hemoglobin variant with a neutral-to-neutral amino acid substitution detected by isoelectric focusing. Hemoglobin. 1986;10(2):127–134.
  • Fleming PJ, Hughes WG, Farmilo RK, et al. Hemoglobin Westmead α2122(H5)His→Glnβ2: a new hemoglobin variant with the substitution in the α1β1 contact area. Hemoglobin. 1980;4(1):39–52.
  • Martin G, Villegas A, Gonzalez FA, et al. A novel mutation of the α2-globin causing α+-thalassemia: Hb Plasencia [α125(H8)Leu→Arg (α2)]. Hemoglobin. 2005;29(2):113–117.
  • Ibarra B, Vaca G, Cantu JM, et al. Heterozygosity and homozygosity for the high oxygen affinity Hemoglobin Tarrant or α126(H9)Asp→Asn in two Mexican families. Hemoglobin. 1981;5(4):337–348.
  • Moo-Penn WF, Bechtel KC, Johnson MH, et al. Hemoglobin Jackson, α127 (H10) Lys replaced by Asn. Am J Clin Pathol. 1976;66(2):453–456.
  • Harteveld CL, Giordano PC, Losekoot M, et al. Hb Utrecht [α2 129(H12)Leu→Pro], a new unstable α2-chain variant associated with a mild α-thalassaemic phenotype. Br J Haematol. 1996;94(3):483–485.
  • Harkness M, Harkness DR, Kutlar F, et al. Hb Sun Prairie or α2130(H13)Ala→Proβ2, a new unstable variant occurring in low quantities. Hemoglobin. 1990;14(5):479–489.
  • Wajcman H, Vasseur C, Blouquit Y, et al. Unstable α-chain hemoglobin variants with factitious β-thalassemia biosynthetic ratio: Hb Questembert (α131[H14]Ser→Pro) and Hb Caen (α132[H15]Val→Gly). Am J Hematol. 1993;42(4):367–374.
  • Ma E-K, Chan A-Y, Lee A-W. Molecular characterization of Hb Val De Marne [α. 133(H16)Ser→Arg; AGC→AGA; (α2)] in a Chinese Family. Hemoglobin. 2004;28(3):213–216.
  • Wajcman H, Blouquit Y, Riou J, et al. A new hemoglobin variant found during investigations of diabetes mellitus: Hb Pavie [α135(H18)Val→Glu]. Clin Chim Acta. 1990;188(1):39–47.
  • Bowman JE, Bloom R, Chen SS, et al. Hb Chicago or α2136(H19)Leu→Metβ2 and a GγGγ-globin gene arrangement in a Black family. Hemoglobin. 1986;10(5):495–505.
  • McDonald MJ, Michalski LA, Turci SM, et al. Structural, functional, and subunit assembly properties of Hemoglobin Attleboro [α138 (H21) Ser→Pro], a variant possessing a site maturation at a critical C-terminal residue. Biochemistry. 1990;29(1):173–178.
  • Rahbar S, Lee TD, Davis M, et al. A second case of Hb Hanamaki [α2139(HC1)Lys→Gluβ2] in an American family with erythrocytosis. Hemoglobin. 1994;18(3):221–226.
  • Wajcman H, Kister J, Marden M, et al. Hemoglobin Rouen (α-140 (HC2) Tyr→His): alteration of the α-chain C-terminal region and moderate increase in oxygen affinity. Biochim Biophys Acta. 1992;1180(1):53–57.
  • Gravely ME, Harris HF, Stallings M, et al. Hb Suresnes or α2141(HC3)Arg→Hisβ2 in a Black family. Hemoglobin. 1978;2(2):187–189.
  • Thompson JD, Gibson TJ, Higgins DG. Multiple sequence alignment using ClustalW and ClustalX. In: Arnette C, editor. Current protocols in bioinformatics. Chichester (West Sussex): John Wiley and Sons. 2002. pp. 2.3.1–2.3.22.
  • Valdar WS. Scoring residue conservation. Proteins. 2002;48(2):227–241.
  • Biasini M, Bienert S, Waterhouse A, et al. SWISS-MODEL: modeling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 2014;42(W1):W252–W258. (Web Server Issue)
  • Laskowski RA, MacArthur MW, Moss DS, et al. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr. 1993;26(2):283–291.
  • Winn MD, Ballard CC, Cowtan KD, et al. Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr. 2011;67(4):235–242.
  • Park SY, Yokoyama T, Shibayama N, et al. 1.25 A resolution crystal structures of human haemoglobin in the oxy, deoxy and carbonmonoxy forms. J Mol Biol. 2006;360(3):690–701.
  • Domingues-Hamdi E, Vasseur C, Fournier JB, et al. Role of α-globin H helix in the building of tetrameric human hemoglobin: interaction with α-hemoglobin stabilizing protein (AHSP) and heme molecule. PLoS One. 2014;9(11):e111395.
  • Tam MF, Rice NW, Maillett DH, et al. Autoxidation and oxygen binding properties of recombinant hemoglobins with substitutions at the αVal-62 or βVal-67 position of the distal heme pocket. J Biol Chem. 2013;288(35):25512–25521.
  • Salentin S, Schreiber S, Haupt VJ, et al. PLIP: fully automated protein-ligand interaction profiler. Nucleic Acids Res. 2015;43(W1):W443–W447.
  • Porollo A, Meller J. Prediction-based fingerprints of protein-protein interactions. Proteins. 2006;66(3):630–645.
  • Timson DJ. Value of predictive bioinformatics in inherited metabolic diseases. WJMG. 2015;5(3):46–51.
  • Frederic MY, Lalande M, Boileau C, et al. UMD-predictor, a new prediction tool for nucleotide substitution pathogenicity -- application to four genes: FBN1, FBN2, TGFBR1, and TGFBR2. Hum Mutat. 2009;30(6):952–959.
  • McGee TL, Seyedahmadi BJ, Sweeney MO, et al. Novel mutations in the long isoform of the USH2A gene in patients with Usher syndrome type II or non-syndromic retinitis pigmentosa. J Med Genet. 2010;47(7):499–506.
  • Vasseur C, Blouquit Y, Kister J, et al. Hemoglobin Thionville. An α-chain variant with a substitution of a glutamate for valine at NA-1 and having an acetylated methionine NH2 terminus. J Biol Chem. 1992;267(18):12682–12691.
  • Harteveld CL, Versteegh FG, van Leer EH, et al. Hb St. Jozef, a Val→Leu N-terminal mutation leading to retention of the methionine, and partial acetylation found in the globin gene in cis with a –α3.7 thalassemia deletion. Hemoglobin. 2007;31(3):313–323.
  • Tchernitchko D, Goossens M, Wajcman H. In silico prediction of the deleterious effect of a mutation: proceed with caution in clinical genetics. Clin Chem. 2004;50(11):1974–1978.
  • Manning JR, Bailey MA, Soares DC, et al. In silico structure-function analysis of pathological variation in the HSD11B2 gene sequence. Physiol Genomics. 2010;42(3):319–330.
  • McCorvie TJ, Timson DJ. In silico prediction of the effects of mutations in the human UDP-galactose 4'-epimerase gene: towards a predictive framework for type III galactosemia. Gene. 2013;524(2):95–104.
  • Browne C, Timson DJ. In silico prediction of the effects of mutations in the human mevalonate kinase gene: towards a predictive framework for mevalonate kinase deficiency. Ann Hum Genet. 2015;79(6):451–459.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.