Publication Cover
Hemoglobin
international journal for hemoglobin research
Volume 45, 2021 - Issue 4
209
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Hb Calgary (HBB: c.194G>T): A Highly Unstable Hemoglobin Variant with a β-Thalassemia Major Phenotype

ORCID Icon, , , , , , , , , & show all
Pages 215-219 | Received 03 Jun 2021, Accepted 29 Jun 2021, Published online: 26 Jul 2021

References

  • Thein SL. The molecular basis of β-thalassemia. Cold Spring Harb Perspect Med. 2013;3(5):a011700.
  • Thein SL. Dominant beta thalassaemia: molecular basis and pathophysiology. Br J Haematol. 1992;80(3):273–277.
  • Bienz MN, Hsia C, Waye JS, et al. A novel human β-globin gene variant [Hb London-Ontario, HBB: c.332T>G] is associated with transfusion-dependent anemia in a patient with a hemoglobin electrophoresis pattern consistent with β-thalassemia trait. Hemoglobin. 2019;43(2):129–131.
  • Kanathezhath B, Hazard FK, Guo H, et al. Hemoglobin Hakkari: an autosomal dominant form of beta thalassemia with inclusion bodies arising from de novo mutation in exon 2 of beta globin gene. Pediatr Blood Cancer. 2010;54(2):332–335.
  • Coleman MB, Steinberg MH, Adams JG 3rd. Hemoglobin Terre Haute arginine beta 106. A posthumous correction to the original structure of hemoglobin Indianapolis. J Biol Chem. 1991;266(9):5798–5800.
  • Adams JG, 3rd, Boxer LA, Baehner RL, et al. Hemoglobin Indianapolis (beta 112[G14] arginine). An unstable beta-chain variant producing the phenotype of severe beta-thalassemia. J Clin Invest. 1979;63(5):931–938.
  • Thein SL, Best S, Sharpe J, et al. Hemoglobin Chesterfield (beta 28 Leu—Arg) produces the phenotype of inclusion body beta thalassemia. Blood. 1991;77(12):2791–2793.
  • Podda A, Galanello R, Maccioni L, et al. Hemoglobin Cagliari (beta 60 [E4] Val—Glu): a novel unstable thalassemic hemoglobinopathy. Blood. 1991;77(2):371–375.
  • Henderson SJ, Timbs AT, McCarthy J, et al. Ten years of routine α- and β-globin gene sequencing in UK hemoglobinopathy referrals reveals 60 novel mutations. Hemoglobin. 2016;40(2):75–84.
  • Roy NB, Wilson EA, Henderson S, et al. A novel 33-Gene targeted resequencing panel provides accurate, clinical-grade diagnosis and improves patient management for rare inherited anaemias. Br J Haematol. 2016;175(2):318–330.
  • Turro E, Astle WJ, Megy K, NIHR BioResource for the 100,000 Genomes Project, et al. Whole-genome sequencing of patients with rare diseases in a national health system. Nature. 2020;583(7814):96–102.
  • Tan AS, Quah TC, Low PS, et al. A rapid and reliable 7-deletion multiplex polymerase chain reaction assay for alpha-thalassemia. Blood. 2001;98(1):250–251.
  • Grimholt RM, Vestli A, Urdal P, et al. Hb Oslo [β42(CD1)Phe→Ile; HBB: c.127T>A]: a novel unstable hemoglobin variant found in a Norwegian patient. Hemoglobin. 2018;42(2):78–83.
  • Patrinos GP, Giardine B, Riemer C, et al. Improvements in the HbVar database of human hemoglobin variants and thalassemia mutations for population and sequence variation studies. Nucleic Acids Res. 2004;32(Database issue):D537–D541.
  • Richards S, Aziz N, Bale S, ACMG Laboratory Quality Assurance Committee, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–424.
  • Coleman MB, Lu ZH, Smith CM, 2nd, et al. Two missense mutations in the beta-globin gene can cause severe beta thalassemia. Hemoglobin Medicine Lake 32 [B14] leucine→glutamine; 98 [FG5] valine→methionine). J Clin Invest. 1995;95(2):503–509.
  • Kazazian HH, Jr, Dowling CE, Hurwitz RL, et al. Dominant thalassemia-like phenotypes associated with mutations in exon 3 of the beta-globin gene. Blood. 1992;79(11):3014–3018.
  • Thom CS, Dickson CF, Olson JS, et al. Normal and abnormal hemoglobins. In: Orkin SH, Fischer DE, Look AS, et al., Editors. Nathan and Oski's Hematology and Oncology of Infancy and Childhood, 8th ed. Philadelphia (PA, USA): Elsevier. 2015:652–665.
  • Huisman THJ, Brown AK, Efremov GD, et al. Hemoglobin Savannah (B6(24) Gly→Ala: an unstable variant causing anemia with inclusion bodies. J Clin Invest. 1971;50(3):650–659.
  • Zhao Y-L, Lin Q-F, He X-W, et al. Hb Hezhou [β64(E8)Gly→Ser; HBB: c.193G>A]: a novel variant on the β-globin gene. Hemoglobin. 2021;45(2):133–135.
  • Blouquit Y, Thillet J, Beuzard Y, et al. Structural and functional studies of hemoglobin J Cala-bria: beta64 (E8) Gly leads to Asp. Biochim Biophys Acta. 1977;492(2):426–432.
  • Marinucci M, Mavilio F, Fontanarosa PP, et al. Studies on a family with Hb J Calabria (α2β2 64 (E8) GlY→Asp). Hemoglobin. 1979;3(5):327–340.
  • Lacan P, Badens C, Lena-Russo D, et al. Hb Aubagne [β64(E8)Gly→Ala]: a new unstable β chain variant found in a French family. Hemoglobin. 2002;26(2):163–167.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.