324
Views
66
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of pH-Sensitivity and Drug Release Characteristics of (Polyacrylamide-Grafted-Xanthan)–Carboxymethyl Cellulose-Based pH-Sensitive Interpenetrating Network Hydrogel Beads

&
Pages 1406-1414 | Published online: 02 Dec 2008

REFERENCES

  • P. Adhikary, and R. P. Singh. (2004). Synthesis, characterization, and flocculation characteristics of hydrolyzed and unhydrolyzed polyacrylamide grafted xanthan gum. J. Appl. Polym. Sci. 94:1411–1419.
  • S. A. Agnihotri, and T. M. Aminabhavi. (2005). Development of novel interpenetrating network gellan gum-poly(vinyl alcohol) hydrogel microspheres for the controlled release of carvedilol. Drug Dev. Ind. Pharm. 31:491–503.
  • S. A. Agnihotri, and T. M. Aminabhavi. (2006). Novel interpenetrating network chitosan-poly(ethyleneoxide–g-acrylamide) microspheres for controlled release of capacitabine. Int. J. Pharm. 324:103–115.
  • D. Bhopatkar, A. K. Anal, and W. F. Stevens. (2005). Ionotropic alginate beads for controlled intestinal protein delivery: effect of chitosan and barium counter-ions on entrapment and release. J. Microencapsul. 22:91–100.
  • K. Burugapalli, D. Bhatia, V. Koul, and V. Choudhary. (2001). Interpenetrating polymer networks based on poly(acrylic acid) and gelatin I: Swelling and thermal behavior. J. Appl. Polym. Sci. 82:217–227.
  • M. Changez, K. Burugapalli, V. Koul, and V. Chowdary. (2003). The effect of composition poly(acrylic acid)-gelatin hydrogel on gentamycin sulphate release in vitro. Biomaterials 24:527–536.
  • M. Changez, V. Koul, K. Burugapalli, and A. K. Dinda. (2004). Studies on biodegradation and release of gentamicin sulphate from interpenetrating network hydrogels based on poly(acrylic acid) and gelatin: In vitro and in vivo. Biomaterials 25:139–146.
  • T. P. Davis, and M. B. Huglin. (1990). Effect of composition on the properties of copolymeric N-vinyl-2-pyrrolidone/methyl methacrylate hydrogels and organogels. Polymer 31:513–519.
  • N. P. Desai, and J. A. Hubbell. (1992). Surface physical interpenetrating networks of poly(ethylene-terephthalate) and poly(ethylene oxide) with biomedical applications. Macromolecules 25:226–232.
  • S. Dincer, A. Tuncel, and E. Piskin. (2002). A potential gene delivery vector: N-isopropylacrylamide-ethyleneimine block copolymers. Macromol. Chem. Phys. 203:460–465.
  • R. K. Drummond, J. Klier, J. A. Almeda, and N. A. Peppas. (1989). Preparation of poly(methacrylic acid-g-ethylene oxide) microspheres. Macromolecules 22:3816–3818.
  • I. C. Eromosele, C. O. Eromosele, and H. K. Zanna. (2002). Graft copolymerization of acrylic acid on methylcellulose by ceric ion/p-xylene redox pair. J. Appl. Polym. Sci. 84:500–504.
  • A. S. Hoffman, P. S. Stayton, V. Bulmus, G. H. Chen, J. P. Chen, C. Cheung, and et al (2000). Really smart bioconjugates of smart polymers and receptor proteins. J. Biomed. Mater. Res. 52:577–586.
  • E. A. Hosny, and R. A. Al-Helw. (1998). Effect of coating of aluminum carboxymethylcellulose beads on the release and bioavailability of diclofenac sodium. Pharm. Acta Helv. 72:255–261.
  • E. A. Hosny, R. A. Al-Helw, and M. A. Al-Dardiri. (1997). Comparative study of in-vitro release and bioavailability of sustained release diclofenac sodium from certain hydrophilic polymers and commercial tablets in beagle dogs. Pharm. Acta Helv. 72:159–164.
  • T. T. Hsieh, K. H. Hsieh, G. P. Simon, and C. Tiu. (1999). Interpenetrating polymer networks of 2-hydroxyethyl methacrylate terminated polyurethane and polyurethane. Polymer 40:3153–3163.
  • B. Jeong, and A. Gutowaka. (2002). Lessons from nature: stimuli-responsive polymers and their biomedical applications. Trends Biotechnol. 20:305–311.
  • F. E. I. Jianqi, Z. Zhang, L. Zhong, and L. Gu. (2002). PVA/PAA thermo-induced hydrogel fiber: Preparation and pH-sensitive behavior in electrolyte solution. J. Appl. Polym. Sci. 85:2423–2430.
  • A. R. Khare, and N. A. Peppas. (1993). Investigation of hydrogel water in polyelectrolyte gel using differential scanning colorimetry. Polymer 34:4595–4600.
  • R. C. Korsmeyer, and N. A. Peppas. (1981). Effect of the morphology of hydrophilic polymeric matrices on the diffusion and release of water-soluble drugs. J. Memb. Sci. 9:211–227.
  • J. D. Kosmala, D. B. Henthorn, and L. B. Peppas. (2000). Preparation of interpenetrating networks of gelatin and dextran as degradable biomaterials. Biomaterials 21:2019–2023.
  • R. V. Kulkarni, and B. Sa. (2007). Electrically responsive hydrogels in drug delivery: A review. J. Appl. Biomater. Biomech. 5:125–139.
  • R. V. Kulkarni, and B. Sa. (2008a). Enteric delivery of ketoprofen through functionally modified poly(acrylamide-grafted-xanthan) based pH-sensitive hydrogel beads: Preparation, in vitro and in vivo evaluation. J. Drug Target 16:167–177.
  • R. V. Kulkarni, and B. Sa. (2008b). Novel pH-sensitive interpenetrating network hydrogel beads of carboxymethylcellulose–(polyacrylamide-grafted-alginate) for controlled release of ketoprofen: Preparation and characterization. Curr. Drug. Deliv. in press.
  • R. V. Kulkarni, and B. Sa. (2008c). Polyacrylamide-grafted-alginate based pH-sensitive hydrogel beads for delivery of ketoprofen to the intestine: In vitro and in vivo evaluation. J. Biomater. Sci. Polym. Ed. in press.
  • S. Maiti, S. Ray, B. Mandal, S. Sarkar, and B. Sa. (2007). Carboxymethyl xanthan microparticles as a carrier for protein delivery. J. Microencapsul. 24:743–756.
  • R. C. Mundaragi, S. A. Patil, S. A. Agnihotri, and T. M. Aminabhavi. (2007). Evaluation of controlled release characteristics of modified xanthan films for transdermal delivery of atenolol. Drug. Dev. Ind. Pharm. 33:79–90.
  • A. Pourjavadi, M. Sadeghi, and H. Hosseinzadeh. (2004). Modified carrageenan.5. Preparation, swelling behavior, salt and pH-sensitivity of partially hydrolyzed crosslinked carrageenan-graft-polymethacrylamide superabsorbent hydrogel. Polym. Adv. Technol. 15:1–9.
  • M. V. Risbud, and R. R. Bhonde. (2000). Polyacrylamide-chitosan hydrogels: In vitro biocompatibility and sustained antibiotic release studies. Drug Deliv. 7:69–75.
  • P. L. Ritger, and N. A. Peppas. (1997). A simple equation for description of solute release: II. Fickian and anomalous release from swellable devices. J. Control. Release 5:37–42.
  • A. P. Rokhade, S. A. Agnihotri, S. A. Patil, N. N. Mallikarjun, P. V. Kulkarni, and T. M. Aminabhavi. (2006). Semi-interpenetrating polymer network microspheres of gelatin and sodium carboxymethyl cellulose for controlled release of ketorolac tromethamine. Carbohydr. Polym. 65:243–252.
  • K. S. Soppimath, A. R. Kulkarni, and T. M. Aminabhavi. (2001). Chemically modified Polyacrylamide-g-guar gum based cross-linked anionic microgels as pH-sensitive drug delivery systems: Preparation and characterization. J. Control. Release 75:331–345.
  • M. M. Talukdar, and J. Plaizier-Vercammen. (1993). Evaluation of xanthan gum as a hydrophilic matrix for controlled-release dosage form preparations. Drug Dev. Ind. Pharm. 19:1037–1046.
  • M. M. Talukdar, A. Michoel, P. Rombaut, and R. Kinget. (1996). Comparative study on xanthan gum and hydroxypropylmethyl cellulose as matrices for controlled-release drug delivery. I. Compaction and in vitro drug release behaviour. Int. J. Pharm. 129:233–241.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.