1,446
Views
30
CrossRef citations to date
0
Altmetric
Review Article

Current and evolving approaches for improving the oral permeability of BCS Class III or analogous molecules

, , , &
Pages 177-189 | Received 04 Oct 2016, Accepted 30 Nov 2016, Published online: 20 Dec 2016

References

  • Lennernas H, Abrahamsson B. The use of biopharmaceutic classification of drugs in drug discovery and development: current status and future extension. J Pharm Pharmacol 2005;57:273–85.
  • He X. Integration of physical, chemical, mechanical, and biopharmaceutical properties in solid oral dosage form development. In: Qiu Y, Chen Y, Zhang GGZ, et  al., eds. Developing solid oral dosage forms. Chapter 18. San Diego: Academic Press; 2009:407–41.
  • Amidon G. Molecular pharmaceutics strategies for targeting transporters and enzymes in the GI tract. American Chemical Society; 2006.
  • Gupta D, Varghese Gupta S, Dahan A, et al. Increasing oral absorption of polar neuraminidase inhibitors: a prodrug transporter approach applied to oseltamivir analogue. Mol Pharm 2013;10:512–22.
  • Miller J. The impact of molecular complexation on intestinal membrane permeation [Doctoral]. Ann Arbor: The University of Michigan; 2009.
  • Miller JM, Dahan A, Gupta D, et al. Enabling the intestinal absorption of highly polar antiviral agents: ion-pair facilitated membrane permeation of zanamivir heptyl ester and guanidino oseltamivir. Mol Pharm 2010;7:1223–34.
  • Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 2001;70:1–20.
  • Stella VJ. Prodrug approaches to enhancing the oral delivery of poorly permeable drugs. In: Valentino Stella, Ronald Borchardt, Michael Hageman, Reza Oliyai, Hans Maag, Jefferson Tilley, eds. Prodrugs: challenges and rewards. New York: Springer-Verlag; 2007:37–82.
  • Rautio J, Kumpulainen H, Heimbach T, et al. Prodrugs: design and clinical applications. Nat Rev Drug Discov 2008;7:255–70.
  • Beaumont K, Webster R, Gardner I, Dack K. Design of ester prodrugs to enhance oral absorption of poorly permeable compounds: challenges to the discovery scientist. Curr Drug Metab 2003;4:461–85.
  • Cundy KC, Fishback JA, Shaw JP, et al. Oral bioavailability of the antiretroviral agent 9-(2-phosphonylmethoxyethyl)adenine (PMEA) from three formulations of the prodrug bis(pivaloyloxymethyl)-PMEA in fasted male cynomolgus monkeys. Pharm Res 1994;11:839–43.
  • Gupta D, Gupta SV, Lee KD, Amidon GL. Chemical and enzymatic stability of amino acid prodrugs containing methoxy, ethoxy and propylene glycol linkers. Mol Pharm 2009;6:1604–11.
  • Dando T, Plosker G. Adefovir dipivoxil: a review of its use in chronic hepatitis B. Drugs 2003;63:2215–34.
  • Perioli L, Ambrogi V, Bernardini C, et al. Potential prodrugs of non-steroidal anti-inflammatory agents for targeted drug delivery to the CNS. Eur J Med Chem 2004;39:715–27.
  • Varma MV, Ambler CM, Ullah M, et al. Targeting intestinal transporters for optimizing oral drug absorption. Curr Drug Metab 2010;11:730–42.
  • Hamman JH, Demana PH, Olivier EI. Targeting receptors, transporters and site of absorption to improve oral drug delivery. Drug Target Insights 2007;2:71–81.
  • Steffansen B, Nielsen CU, Brodin B, et al. Intestinal solute carriers: an overview of trends and strategies for improving oral drug absorption. Eur J Pharm Sci 2004;21:3–16.
  • Beauchamp LM, Orr GF, de Miranda P, et al. Amino acid ester prodrugs of acyclovir. Antiviral Chem Chemother 1992;3:157–64.
  • Fleisher D, Stewart BH, Amidon GL. Design of prodrugs for improved gastrointestinal absorption by intestinal enzyme targeting. Methods Enzymol 1985;112:360–81.
  • Han HK, Amidon GL. Targeted prodrug design to optimize drug delivery. AAPS PharmSci 2000;2:E6.
  • Starrett JE Jr, Tortolani DR, Russell J, et al. Synthesis, oral bioavailability determination, and in vitro evaluation of prodrugs of the antiviral agent 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA). J Med Chem 1994;37:1857–64.
  • Cundy KC, Branch R, Chernov-Rogan T, et al. XP13512 [(+/-)-1-([(alpha-isobutanoyloxyethoxy)carbonyl] aminomethyl)-1-cyclohexane acetic acid], a novel gabapentin prodrug: I. Design, synthesis, enzymatic conversion to gabapentin, and transport by intestinal solute transporters. J Pharmacol Exp Ther 2004;311:315–23.
  • Ganem-Quintanar A, Kalia YN, Falson-Rieg F, Buri P. Mechanisms of oral permeation enhancement. Int J Pharm 1997;156:127–42.
  • Aungst BJ. Absorption enhancers: applications and advances. Aaps J 2012;14:10–18.
  • Rege BD, Kao JP, Polli JE. Effects of nonionic surfactants on membrane transporters in Caco-2 cell monolayers. Eur J Pharm Sci 2002;16:237–46.
  • David JW, Grant, Higuchi T. Ion pairs and solubility behavior. In: David JW Grant, Higuchi T, eds. Solubility behavior of organic compounds. Techniques of Chemistry Series Wiley, John & Sons, Incorporated; 1990:343–99.
  • Gundogdu E, Gonzalez Alvarez I, Bermejo Sanz M, Karasulu E. Assessment of fexofenadine hydrochloride permeability and dissolution with an anionic surfactant using Caco-2 cells. Pharmazie 2011;66:747–53.
  • Park JW, Hwang SR, Jeon OC, et al. Enhanced oral absorption of ibandronate via complex formation with bile acid derivative. J Pharm Sci 2013;102:341–46.
  • Sonaje K, Chuang EY, Lin KJ, et al. Opening of epithelial tight junctions and enhancement of paracellular permeation by chitosan: microscopic, ultrastructural, and computed-tomographic observations. Mol Pharm 2012;9:1271–79.
  • Artursson P, Lindmark T, Davis SS, Illum L. Effect of chitosan on the permeability of monolayers of intestinal epithelial cells (Caco-2). Pharm Res 1994;11:1358–61.
  • Dodane V, Amin Khan M, Merwin JR. Effect of chitosan on epithelial permeability and structure. Int J Pharm 1999;182:21–32.
  • Perioli L, Ambrogi V, Nocchetti M, et al. Preformulation studies on host–guest composites for oral administration of BCS class IV drugs: HTlc and furosemide. Applied Clay Sci 2011;53:696–703.
  • Perioli L, Mutascio P, Pagano C. Influence of the nanocomposite MgAl-HTlc on gastric absorption of drugs: in vitro and ex vivo studies. Pharm Res 2013;30:156–66.
  • Amidon GL, Lee HJ. Absorption of peptide and peptidomimetic drugs. Annu Rev Pharmacol Toxicol 1994;34:321–41.
  • Amidon G, Johnson K. Intestinal aminopeptidase distribution and specificity: basis for a prodrug strategy. In: Roche E, ed. Bioreversible carriers in drug design, theory and application. New York: Pergamon Press; 1987;243–61.
  • Barry BW. Novel mechanisms and devices to enable successful transdermal drug delivery. Eur J Pharm Sci 2001;14:101–14.
  • Wang M, Fang L, Ren C, Li T. Effect of ion-pairing and enhancers on scutellarin skin permeability. J Pharm Pharmacol 2008;60:429–35.
  • Suresh PK, Paul SD. Ion-paired drug delivery: an avenue for bioavailability improvement. Sierra Leone J Biomed Res 2011;3:70–76.
  • Makhlof A, Werle M, Tozuka Y, Takeuchi H. A mucoadhesive nanoparticulate system for the simultaneous delivery of macromolecules and permeation enhancers to the intestinal mucosa. J Control Release 2011;149:81–88.
  • Torchilin VP. Multifunctional nanocarriers. Adv Drug Deliv Rev 2006;58:1532–55.
  • Megwa SA, Cross SE, Whitehouse MW, et al. Effect of ion pairing with alkylamines on the in-vitro dermal penetration and local tissue disposition of salicylates. J Pharm Pharmacol 2000;52:929–40.
  • Nash RA, Mehta DB, Matias JR, Orentreich N. The possibility of lidocaine ion pair absorption through excised hairless mouse skin. Skin Pharmacol 1992;5:160–70.
  • Valenta C, Siman U, Kratzel M, Hadgraft J. The dermal delivery of lignocaine: influence of ion pairing. Int J Pharm 2000;197:77–85.
  • Trotta M, Ugazio E, Peira E, Pulitano C. Influence of ion pairing on topical delivery of retinoic acid from microemulsions. J Control Release 2003;86:315–21.
  • Khadka P, Ro J, Kim H, et al. Pharmaceutical particle technologies: an approach to improve drug solubility, dissolution and bioavailability. Asian J Pharm Sci 2014;9:304–16.
  • Yildirimer L, Thanh NTK, Loizidou M, Seifalian AM. Toxicology and clinical potential of nanoparticles. Nano Today 2011;6:585–607.
  • Vrignaud S, Benoit JP, Saulnier P. Strategies for the nanoencapsulation of hydrophilic molecules in polymer-based nanoparticles. Biomaterials 2011;32:8593–604.
  • Martins OE, Ifeoma CO, Ekaete IA, Sabinus IO. Nanotechnology in drug delivery; 2012.
  • Cho K, Wang X, Nie S, et al. Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 2008;14:1310–16.
  • Kaur IP, Kanwar M. Ocular preparations: the formulation approach. Drug Dev Ind Pharm 2002;28:473–93.
  • Duggan S, Keating G. Pegylated liposomal doxorubicin. Drugs 2011;71:2531–58.
  • Plosker G. Pegylated liposomal doxorubicin. Drugs 2008;68:2535–51.
  • Visser CC, Stevanovic S, Voorwinden LH, et al. Targeting liposomes with protein drugs to the blood-brain barrier in vitro. Eur J Pharm Sci 2005;25:299–305.
  • Maheshwari A, Mahato RI, McGregor J, et al. Soluble biodegradable polymer-based cytokine gene delivery for cancer treatment. Mol Ther 2000;2:121–30.
  • Jia L, Qiao MX, Hu HY, et al. The characteristics of temperature/pH sensitive block copolymer micelles in vitro. Yao Xue Xue Bao 2011;46:839–44.
  • Zhou Z, Badkas A, Stevenson M, et al. Herceptin conjugated PLGA-PHis-PEG pH sensitive nanoparticles for targeted and controlled drug delivery. Int J Pharm 2015;487:81–90.
  • Hruby M, Konak C, Ulbrich K. Polymeric micellar pH-sensitive drug delivery system for doxorubicin. J Control Release 2005;103:137–48.
  • Chu LY, Liang YJ, Chen WM, et al. Preparation of glucose-sensitive microcapsules with a porous membrane and functional gates. Colloids Surf B Biointerfaces 2004;37:9–14.
  • Zara GP, Cavalli R, Fundaro A, et al. Pharmacokinetics of doxorubicin incorporated in solid lipid nanospheres (SLN). Pharmacol Res 1999;40:281–86.
  • Kalaria DR, Sharma G, Beniwal V, Ravi Kumar MN. Design of biodegradable nanoparticles for oral delivery of doxorubicin: in vivo pharmacokinetics and toxicity studies in rats. Pharm Res 2009;26:492–501.
  • Dickinson PA, Howells SW, Kellaway IW. Novel nanoparticles for pulmonary drug administration. J Drug Target 2001;9:295–302.
  • Gao X, Qian J, Zheng S, et al. Up-regulating blood brain barrier permeability of nanoparticles via multivalent effect. Pharm Res 2013;30:2538–48.
  • Fattal E, Vauthier C, Aynie I, et al. Biodegradable polyalkylcyanoacrylate nanoparticles for the delivery of oligonucleotides. J Control Release 1998;53:137–43.
  • Sun S, Liang N, Kawashima Y, et al. Hydrophobic ion pairing of an insulin-sodium deoxycholate complex for oral delivery of insulin. Int J Nanomedicine 2011;6:3049–56.
  • Obermeier B, Langguth P, Frey H. Partially quarternized amino functional poly(methacrylate) terpolymers: versatile drug permeability modifiers. Biomacromolecules 2011;12:425–31.
  • Magalhães L, Nitschke M. Antimicrobial activity of rhamnolipids against Listeria monocytogenes and their synergistic interaction with nisin. Food Control 2012;29:138–42.
  • Sekhon Randhawa KK, Rahman PKSM. Rhamnolipid biosurfactants – past, present, and future scenario of global market. Front Microbiol 2014;5:454. doi: 10.3389/fmicb.2014.00454.
  • Brayden DJ, Bzik VA, Lewis AL, Illum L. CriticalSorb promotes permeation of flux markers across isolated rat intestinal mucosae and Caco-2 monolayers. Pharm Res 2012;29:2543–54.
  • Attama AA, Momoh MA, Builders PF. Lipid nanoparticulate drug delivery systems: a revolution in dosage form design and development, recent advances in novel drug carrier systems. In: Sezer AD, ed. Recent advances in novel drug carrier systems. Rijeka, Croatia: IN TECH d.o.o; 2012:107–40.
  • Mohri K, Morimoto N, Maruyama M, et al. Potential of D-octaarginine-linked polymers as an in vitro transfection tool for biomolecules. Bioconjug Chem 2015;26:1782–90.
  • Bernkop-Schnurch A, Kast CE, Guggi D. Permeation enhancing polymers in oral delivery of hydrophilic macromolecules: thiomer/GSH systems. J Control Release 2003;93:95–103.
  • Langoth N, Kalbe J, Bernkop-Schnurch A. Development of a mucoadhesive and permeation enhancing buccal delivery system for PACAP (pituitary adenylate cyclase-activating polypeptide). Int J Pharm 2005;296:103–11.
  • Naesens L, Balzarini J, Bischofberger N, De Clercq E. Antiretroviral activity and pharmacokinetics in mice of oral bis(pivaloyloxymethyl)-9-(2-phosphonylmethoxyethyl)adenine, the bis(pivaloyloxymethyl) ester prodrug of 9-(2-phosphonylmethoxyethyl)adenine. Antimicrob Agents Chemother 1996;40:22–28.
  • Martien R, Hoyer H, Perera G, Schnurch AB. An oral oligonucleotide delivery system based on a thiolated polymer: development and in vitro evaluation. Eur J Pharm Biopharm 2011;78:355–60.
  • Mrestani Y, Hartl A, Neubert RH. Influence of absorption enhancers on the pharmacokinetic properties of non-oral beta-lactam-cefpirom using the rabbit (Chinchilla) in vivo model. Int J Pharm 2006;309:67–70.
  • Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm 2000;50:47–60.
  • Stote R, Miller M, Marbury T, et al. Enhanced absorption of Nasulin™, an ultrarapid-acting intranasal insulin formulation, using single nostril administration in normal subjects. J Diabetes Sci Technol 2011;5:113–19.
  • Emisphere Technologies I. Eligen Β12™ Roseland, NJ; 2015 [cited 2015 12/23/2015]. Available from: http://www.emisphere.com/eligen_b12.html.
  • Merrion P. Almerol™ (MER-103) Dublin, Ireland; 2008 [cited 2015 12/23/2015]. Available from: http://www.merrionpharma.com/content/portfolio/mer103.asp.
  • Raoof AA, Chiu P, Ramtoola Z, et al. Oral bioavailability and multiple dose tolerability of an antisense oligonucleotide tablet formulated with sodium caprate. J Pharm Sci 2004;93:1431–39.
  • Raoof AA, Ramtoola Z, McKenna B, et al. Effect of sodium caprate on the intestinal absorption of two modified antisense oligonucleotides in pigs. Eur J Pharm Sci 2002;17:131–38.
  • Melmed S, Popovic V, Bidlingmaier M, et al. Safety and efficacy of oral octreotide in acromegaly: results of a multicenter phase III trial. J Clin Endocrinol Metab 2015;100:1699–708.
  • Tuvia S, Atsmon J, Teichman SL, et al. Oral octreotide absorption in human subjects: comparable pharmacokinetics to parenteral octreotide and effective growth hormone suppression. J Clin Endocrinol Metab 2012;97:2362–69.
  • Diabetology. Capsulin™ London, UK; 2015 [cited 2015 12/23/2015]. Available from: http://www.diabetology.co.uk/oral.htm.
  • Smith A, Perelman M, Hinchcliffe M. Chitosan: a promising safe and immune-enhancing adjuvant for intranasal vaccines. Hum Vaccin Immunother 2014;10:797–807.
  • Apricus B. Femprox(R) phase III clinical data from Apricus Biosciences chosen for a presentation at the European Society for Sexual Medicine San Diego, CA; 2011 [cited 2015 12/23/2015]. Available from: http://ir.apricusbio.com/phoenix.zhtml?c=118007&p=irol-newsArticle&ID =1982139.
  • Kowalczyk TH, Pasumarthy MK, Gedeon C, et al. Type of polylysine counterion influences morphology and function of condensed DNA. Mol Ther 2001;3:S259. Available from: http://168.144.36.118/pdf/Type%20of%20Polylysine%20Counterion%20ASGT%202001%20Poster.pdf [last accessed 10 Sep 2016].
  • Shibue M, Mant CT, Hodges RS. Effect of anionic ion-pairing reagent hydrophobicity on selectivity of peptide separations by reversed-phase liquid chromatography. J Chromatogr A 2005;1080:68–75.
  • You SK, Kwon HH, Lee JM, et al. Studies on the formation of hydrophobic ion-pairing complex of alendronate. Arch Pharm Res 2009;32:1055–60.
  • Dawidczyk CM, Kim C, Park JH, et al. State-of-the-art in design rules for drug delivery platforms: lessons learned from FDA-approved nanomedicines. J Control Release 2014;187:133–44.
  • Miele E, Spinelli GP, Miele E, et al. Albumin-bound formulation of paclitaxel (Abraxane ABI-007) in the treatment of breast cancer. Int J Nanomed 2009;4:99–105.
  • Seymour LW, Ferry DR, Kerr DJ, et al. Phase II studies of polymer-doxorubicin (PK1, FCE28068) in the treatment of breast, lung and colorectal cancer. Int J Oncol 2009;34:1629–36.
  • Langer CJ, O'Byrne KJ, Socinski MA, et al. Phase III trial comparing paclitaxel poliglumex (CT-2103, PPX) in combination with carboplatin versus standard paclitaxel and carboplatin in the treatment of PS 2 patients with chemotherapy-naive advanced non-small cell lung cancer. J Thoracic Oncol 2008;3:623–30.
  • Matsumura Y. The drug discovery by nanomedicine and its clinical experience. Jpn J Clin Oncol 2014;44:515–25.
  • Patnaik A, Papadopoulos KP, Tolcher AW, et al. Phase I dose-escalation study of EZN-2208 (PEG-SN38), a novel conjugate of poly(ethylene) glycol and SN38, administered weekly in patients with advanced cancer. Cancer Chemother Pharmacol 2013;71:1499–506
  • Oasmia Pharmaceutical A. Study of paclitaxel in patients with ovarian cancer [Published: Clinicaltrials.gov. 2014 [cited November 29, 2016]. Available from: https://clinicaltrials.gov/ct2/show/NCT00989131.
  • Jain K, Kesharwani P, Gupta U, Jain NK. Dendrimer toxicity: let's meet the challenge. Int J Pharm 2010;394:122–42.
  • Kannan RM, Nance E, Kannan S, Tomalia DA. Emerging concepts in dendrimer-based nanomedicine: from design principles to clinical applications. J Intern Med 2014;276:579–617.
  • Dokka S, Toledo D, Shi X, et al. Oxygen radical-mediated pulmonary toxicity induced by some cationic liposomes. Pharm Res 2000;17:521–25.
  • James ND, Coker RJ, Tomlinson D, et al. Liposomal doxorubicin (Doxil): an effective new treatment for Kaposi's sarcoma in AIDS. Clin Oncol (R Coll Radiol) 1994;6:294–96.
  • Barenholz Y. Doxil(R) – the first FDA-approved nano-drug: lessons learned. J Control Release 2012;160:117–34.
  • Singh P, Destito G, Schneemann A, Manchester M. Canine parvovirus-like particles, a novel nanomaterial for tumor targeting. J Nanobiotechnol 2006;4:2.
  • Singh P, Prasuhn D, Yeh RM, et al. Bio-distribution, toxicity and pathology of cowpea mosaic virus nanoparticles in vivo. J Control Release 2007;120:41–50.
  • Franzen S, Lommel SA. Targeting cancer with ‘smart bombs’: equipping plant virus nanoparticles for a ‘seek and destroy’ mission. Nanomedicine (Lond) 2009;4:575–88.
  • Yildiz I, Shukla S, Steinmetz NF. Applications of viral nanoparticles in medicine. Curr Opin Biotechnol2011;22:901–8.
  • Liu Y, Zhao Y, Sun B, Chen C. Understanding the toxicity of carbon nanotubes. Acc Chem Res 2013;46:702–13.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.