430
Views
24
CrossRef citations to date
0
Altmetric
Research Article

A novel pH-responsive hydrogel-based on calcium alginate engineered by the previous formation of polyelectrolyte complexes (PECs) intended to vaginal administration

, , , , , , & show all
Pages 1656-1668 | Received 16 Jan 2017, Accepted 03 May 2017, Published online: 25 May 2017

References

  • Valenta C. The use of mucoadhesive polymers in vaginal delivery. Adv Drug Deliv Rev. 2005;57:1692–1712.
  • Perioli L, Ambrogi V, Venezia L, et al. Formulation studies of benzydamine mucoadhesive formulations for vaginal administration. Drug Dev Ind Pharm. 2009;35:769–779.
  • Aka-Any-Grah A, Bouchemal K, Koffi A, et al. Formulation of mucoadhesive vaginal hydrogels insensitive to dilution with vaginal fluids. Eur J Pharm Biopharm. 2010;76:296–303.
  • Campaña-Seoane M, Peleteiro A, Laguna R, et al. Bioadhesive emulsions for control release of progesterone resistant to vaginal fluids clearance. Int J Pharm. 2014;477:495–505.
  • de Araújo Pereira RR, Bruschi ML. Vaginal mucoadhesive drug delivery systems. Drug Dev Ind Pharm. 2012;38:643–652.
  • Karavana SY. A new in-situ gel formulation of Itraconazole for vaginal administration. PP. 2012;3:417–426.
  • Kristmundsdottir T, Sigurdsson P, Thormar H. Effect of buffers on the properties of microbicidal hydrogels containing monoglyceride as the active ingredient. Drug Dev Ind Pharm. 2003;29:121–129.
  • Ahmed EM. Hydrogel: preparation, characterization, and applications: a review. J Adv Res. 2015;6:105–121.
  • Hoare TR, Kohane DS. Hydrogels in drug delivery: progress and challenges. Polymer 2008;49:1993–2007.
  • Abd El-Ghaffar MA, Hashem MS, El-Awady MK, et al. pH-sensitive sodium alginate hydrogels for riboflavin controlled release. Carbohydr Polym. 2012;89:667–675.
  • Najafi-Soulari S, Shekarchizadeh H, Kadivar M. Encapsulation optimization of lemon balm antioxidants in calcium alginate hydrogels. J Biomater Sci Polym Ed. 2016;27:1631–1644.
  • George M, Abraham TE. Polyionic hydrocolloids for the intestinal delivery of protein drugs: Alginate and chitosan — a review. J Control Release. 2006;114:1–14.
  • López Córdoba A, Deladino L, Martino M. Effect of starch filler on calcium-alginate hydrogels loaded with yerba mate antioxidants. Carbohydr Polym. 2013;95:315–323.
  • Liu G, Zhou H, Wu H, et al. Preparation of alginate hydrogels through solution extrusion and the release behavior of different drugs. J Biomater Sci Polym Ed. 2016;27:1808–1823.
  • Lewandowska-Lancucka J, Mystek K, Mignon A, et al. Alginate- and gelatin-based bioactive photocross-linkable hybrid materials for bone tissue engineering. Carbohydr Polym. 2017;157:1714–1722.
  • Alam MA, Ahmad FJ, Khan ZI, et al. Development and evaluation of acid-buffering bioadhesive vaginal tablet for mixed vaginal infections. AAPS PharmSciTech. 2007;8:E109.
  • Huang X, Brazel CS. On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J Control Release. 2001;73:121–136.
  • Patil J, Kamalapur M, Marapur S, et al. Ionotropic gelation and polyelectrolyte complexation: the novel techniques to design hydrogel particulate sustained, modulated drug delivery system: a review. Dig J Nanomater Biostruct. 2010;5:241–248.
  • Čalija B, Cekić N, Savić S, et al. pH-sensitive microparticles for oral drug delivery based on alginate/oligochitosan/Eudragit® L100-55 “sandwich” polyelectrolyte complex. Colloids Surf B Biointerf. 2013;110:395–402.
  • Coppi G, Iannuccelli V, Sala N, et al. Alginate microparticles for Polymyxin B Peyer's patches uptake: microparticles for antibiotic oral administration. J Microencapsul. 2004;21:829–839.
  • Puskás I, Szemjonov A, Fenyvesi É, et al. Aspects of determining the molecular weight of cyclodextrin polymers and oligomers by static light scattering. Carbohydr Polym. 2013;94:124–128.
  • Murphy RM. Static and dynamic light scattering of biological macromolecules: what can we learn? Curr Opin Biotechnol. 1997;8:25–30.
  • Bantle S, Schmidt M, Burchard W. Simultaneous static and dynamic light scattering. Macromolecules 1982;15:1604–1609.
  • Harding S. Analysis of polysaccharides by ultracentrifugation. size, conformation and interactions in solution. In Heinze T. (ed), Polysaccharides I. Advances in Polymer Science. Springer: Berlin; 2005. p. 211–254.
  • Penman A, Sanderson GR. A method for the determination of uronic acid sequence in alginates. Carbohydr Res. 1972;25:273–282.
  • Grasdalen H, Larsen B, Smidsrød O. A p.m.r. study of the composition and sequence of uronate residues in alginates. Carbohydr Res. 1979;68:23–31.
  • Grasdalen H. High-field, 1H-n.m.r. spectroscopy of alginate: sequential structure and linkage conformations. Carbohydr Res. 1983;118:255–260.
  • Bertagnolli C, Espindola AP, Kleinubing SJ, et al. Sargassum filipendula alginate from Brazil: seasonal influence and characteristics. Carbohydr Polym. 2014;111:619–623.
  • Schweizer D, Schonhammer K, Jahn M, et al. Protein-polyanion interactions for the controlled release of monoclonal antibodies. Biomacromolecules. 2013;14:75–83.
  • Andrews GP, Donnelly L, Jones DS, et al. Characterization of the rheological, mucoadhesive, and drug release properties of highly structured gel platforms for intravaginal drug delivery. Biomacromolecules. 2009;10:2427–2435.
  • Cury BS, Castro AD, Klein SI, et al. Modeling a system of phosphated cross-linked high amylose for controlled drug release. Part 2: physical parameters, cross-linking degrees and drug delivery relationships. Int J Pharm. 2009;371:8–15.
  • USP. United States Pharmacopeia and National Formulary -USP 35-NF30. 2012. Buffer Solutions 1, p.1067.
  • Prezotti FG, Cury BSF, Evangelista RC. Mucoadhesive beads of gellan gum/pectin intended to controlled delivery of drugs. Carbohydr Polym. 2014;113:286–295.
  • Kyzas GZ, Lazaridis NK, Bikiaris DN. Optimization of chitosan and β-cyclodextrin molecularly imprinted polymer synthesis for dye adsorption. Carbohydr Polym. 2013;91:198–208.
  • Lan Q, Bassi AS, Zhu J-X, et al. A modified Langmuir model for the prediction of the effects of ionic strength on the equilibrium characteristics of protein adsorption onto ion exchange/affinity adsorbents. Chem Eng J. 2001;81:179–186.
  • Yang J, Chen J, Pan D, et al. pH-sensitive interpenetrating network hydrogels based on chitosan derivatives and alginate for oral drug delivery. Carbohydr Polym. 2013;92:719–725.
  • Lee KY, Mooney DJ. Alginate: Properties and biomedical applications. Prog Polym Sci. 2012;37:106–126.
  • Feng L, Cao Y, Xu D, et al. Molecular weight distribution, rheological property and structural changes of sodium alginate induced by ultrasound. Ultrason Sonochem. 2017;34:609–615.
  • Boontheekul T, Kong HJ, Mooney DJ. Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution. Biomaterials. 2005;26:2455–2465.
  • Alsberg E, Kong HJ, Hirano Y, et al. Regulating bone formation via controlled scaffold degradation. J Dent Res. 2003;82:903–908.
  • Bonino CA, Krebs MD, Saquing CD, et al. Electrospinning alginate-based nanofibers: from blends to crosslinked low molecular weight alginate-only systems. Carbohydr Polym. 2011;85:111–119.
  • Torres MR, Sousa APA, Silva Filho EAT, et al. Extraction and physicochemical characterization of Sargassum vulgare alginate from Brazil. Carbohydr Res. 2007;342:2067–2074.
  • Larsen B, Salem DM, Sallam MA, et al. Characterization of the alginates from algae harvested at the Egyptian Red Sea coast. Carbohydr Res. 2003;338:2325–2336.
  • Agulhon P, Robitzer M, Habas J-P, et al. Influence of both cation and alginate nature on the rheological behavior of transition metal alginate gels. Carbohydr Polym. 2014;112:525–531.
  • Neves J, da Silva MV, Gonçalves MP, et al. Rheological properties of vaginal hydrophilic polymer gels. Curr Drug Deliv. 2009;6:83–92.
  • Owen DH, Peters JJ, Katz DF. Rheological properties of contraceptive gels. Contraception. 2000;62:321–326.
  • Saxena A, Kaloti M, Bohidar HB. Rheological properties of binary and ternary protein–polysaccharide co-hydrogels and comparative release kinetics of salbutamol sulphate from their matrices. Int J Biol Macromol. 2011;48:263–270.
  • Berger J, Reist M, Mayer JM, et al. Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur J Pharm Biopharm. 2004;57:35–52.
  • Schatz C, Domard A, Viton C, et al. Versatile and efficient formation of colloids of biopolymer-based polyelectrolyte complexes. Biomacromolecules. 2004;5:1882–1892.
  • Lankalapalli S, Kolapalli VM. Polyelectrolyte complexes: A review of their applicability in drug delivery technology. Indian J Pharm Sci. 2009;71:481–487.
  • Peinado I, Lesmes U, Andres A, et al. Fabrication and morphological characterization of biopolymer particles formed by electrostatic complexation of heat treated lactoferrin and anionic polysaccharides. Langmuir. 2010;26:9827–9834.
  • Kwa AL, Tam VH, Falagas ME. Polymyxins: a review of the current status including recent developments. Ann Acad Med Singap. 2008; 37:870–883.
  • Fefelova NA, Nurkeeva ZS, Mun GA, et al. Mucoadhesive interactions of amphiphilic cationic copolymers based on [2-(methacryloyloxy)ethyl]trimethylammonium chloride. Int J Pharm. 2007;339:25–32.
  • Woitiski CB, Veiga F, Ribeiro A, et al. Design for optimization of nanoparticles integrating biomaterials for orally dosed insulin. Eur J Pharm Biopharm. 2009;73:25–33.
  • Severino P, Chaud MV, Shimojo A, et al. Sodium alginate-cross-linked polymyxin B sulphate-loaded solid lipid nanoparticles: Antibiotic resistance tests and HaCat and NIH/3T3 cell viability studies. Colloids Surf B Biointerf. 2015;129:191–197.
  • Bruschi ML, Jones DS, Panzeri H, et al. Semisolid systems containing propolis for the treatment of periodontal disease: in vitro release kinetics, syringeability, rheological, textural, and mucoadhesive properties. J Pharm Sci. 2007;96:2074–2089.
  • Rencber S, Karavana SY, Senyigit ZA, et al. Mucoadhesive in situ gel formulation for vaginal delivery of clotrimazole: formulation, preparation, and in vitro/in vivo evaluation. Pharm Dev Technol. 2017;22:551–561.
  • Senyigit ZA, Karavana SY, Erac B, et al. Evaluation of chitosan based vaginal bioadhesive gel formulations for antifungal drugs. Acta Pharm. 2014;64:139–156.
  • Wang Q, Xie X, Zhang X, et al. Preparation and swelling properties of pH-sensitive composite hydrogel beads based on chitosan-g-poly (acrylic acid)/vermiculite and sodium alginate for diclofenac controlled release. Int J Biol Macromol. 2010;46:356–362.
  • Boddupalli BM, Mohammed ZN, Nath RA, et al. Mucoadhesive drug delivery system: an overview. J Adv Pharm Technol Res. 2010;1:381–387.
  • Figueiras A, Carvalho R, Veiga F. Mucoadhesive drug delivery system in the oral cavity: Mucoadhesive mechanism and mucoadhesive polymers. Revista Lusófona De Ciências e Tecnologia Da Saúde. 2007;2:216–233.
  • Smart JD. The basics and underlying mechanisms of mucoadhesion. Adv Drug Deliv Rev. 2005;57:1556–1568.
  • Bajpai SK, Tankhiwale R. Investigation of water uptake behavior and stability of calcium alginate/chitosan bi-polymeric beads: part-1. React Funct Polym. 2006;66:645–658.
  • Berger J, Reist M, Mayer JM, et al. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm. 2004;57:19–34.
  • Bigi A, Cojazzi G, Panzavolta S, et al. Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking. Biomaterials. 2001;22:763–768.
  • Carbinatto FM, de Castro AD, Evangelista RC, et al. Insights into the swelling process and drug release mechanisms from cross-linked pectin/high amylose starch matrices. Asian J Pharm Sci. 2014;9:27–34.
  • Sosnik A, das Neves J, Sarmento B. Mucoadhesive polymers in the design of nano-drug delivery systems for administration by non-parenteral routes: a review. Prog Polym Sci. 2014;39:2030–2075.
  • Dhawan S, Singla AK, Sinha VR. Evaluation of mucoadhesive properties of chitosan microspheres prepared by different methods. AAPS Pharm Sci Tech. 2004;5:e67.
  • Mansuri S, Kesharwani P, Jain K, et al. Mucoadhesion: a promising approach in drug delivery system. React Funct Polym. 2016;100:151–172.
  • Carvalho FC, Bruschi ML, Evangelista RC, et al. Mucoadhesive drug delivery systems. Braz J Pharm Sci. 2010;46:1–17.
  • Caramella CM, Rossi S, Ferrari F, et al. Mucoadhesive and thermogelling systems for vaginal drug delivery. Adv Drug Deliv Rev. 2015;92:39–52.
  • Khutoryanskiy VV. Advances in mucoadhesion and mucoadhesive polymers. Macromol Biosci. 2011;11:748–764.
  • Boni FI, Prezotti FG, Cury BS. Gellan gum microspheres crosslinked with trivalent ion: effect of polymer and crosslinker concentrations on drug release and mucoadhesive properties. Drug Dev Ind Pharm. 2016;42:1283–1290.
  • Ng C, Losso JN, Marshall WE, et al. Freundlich adsorption isotherms of agricultural by-product-based powdered activated carbons in a geosmin–water system. Bioresour Technol. 2002;85:131–135.
  • Hameed BH, Rahman AA. Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material. J Hazard Mater. 2008;160:576–581.
  • Li Y-H, Di Z, Ding J, et al. Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes. Water Res. 2005;39:605–609.
  • Guo C, Gemeinhart RA. Understanding the adsorption mechanism of chitosan onto poly(lactide-co-glycolide) particles. Eur J Pharm Biopharm. 2008;70:597–604.
  • Febrianto J, Kosasih AN, Sunarso J, et al. Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. J Hazard Mater. 2009;162:616–645.
  • McGinty S, Pontrelli G. A general model of coupled drug release and tissue absorption for drug delivery devices. J Control Release. 2015;217:327–336.
  • Oliveira GF, Ferrari PC, Carvalho LQ, et al. Chitosan–pectin multiparticulate systems associated with enteric polymers for colonic drug delivery. Carbohydr Polym. 2010;82:1004–1009.
  • Pedreiro LN, Cury F, Stringhetti B, et al. Mucoadhesive Nanostructured Polyelectrolyte Complexes as Potential Carrier to Improve Zidovudine Permeability. J Nanosci Nanotechnol. 2016;16:1248–1256.
  • Bele MH, Derle DV. Mechanism of disintegrant action of polacrilin potassium: Swelling or wicking?. Acta Pharm Sin B. 2012;2:70–76.
  • Korsmeyer RW, Gurny R, Doelker E, et al. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm. 1983;15:25–35.
  • Peppas NA, Narasimhan B. Mathematical models in drug delivery: How modeling has shaped the way we design new drug delivery systems. J Control Release. 2014;190:75–81.
  • Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13:123–133.
  • Kaity S, Isaac J, Ghosh A. Interpenetrating polymer network of locust bean gum-poly (vinyl alcohol) for controlled release drug delivery. Carbohydr Polym. 2013;94:456–467.
  • Langenbucher F. Letters to the Editor: Linearization of dissolution rate curves by the Weibull distribution. J Pharm Pharmacol. 1972;24:979–981.
  • Miller-Chou BA, Koenig JL. A review of polymer dissolution. Prog Polym Sci. 2003;28:1223–1270.
  • Omidian H, Park K. Swelling agents and devices in oral drug delivery. J Drug Deliv Sci Technol. 2008;18:83–93.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.