585
Views
41
CrossRef citations to date
0
Altmetric
Research Article

A novel vehicle for local protein delivery to the inner ear: injectable and biodegradable thermosensitive hydrogel loaded with PLGA nanoparticles

, , , , &
Pages 89-98 | Received 07 Mar 2017, Accepted 23 Aug 2017, Published online: 13 Sep 2017

References

  • Moser T. Gene therapy for deafness: How close are we? Sci Transl Med. 2015;7:295fs228.
  • Liu H, Hao J, Li KS. Current strategies for drug delivery to the inner ear. Acta Pharm Sin B. 2013;3:86–96.
  • McCall AA, Swan EE, Borenstein JT, et al. Drug delivery for treatment of inner ear disease: current state of knowledge. Ear Hear. 2010;31:56–65.
  • Lustig LR. The history of intratympanic drug therapy in otology. Otolaryngol Clin North Am. 2004;37:1001–1017.
  • Zhang Y, Su H, Wen L, et al. Mathematical modeling for local trans-round window membrane drug transport in the inner ear. Drug Deliv. 2016;23:3082–3087.
  • Lajud SA, Han Z, Chi FL, et al. A regulated delivery system for inner ear drug application. J Control Release. 2013;166:268–276.
  • Yu D, Sun C, Zheng Z, et al. Inner ear delivery of dexamethasone using injectable silk-polyethylene glycol (PEG) hydrogel. Int J Pharm. 2016;503:229–237.
  • Chen G, Zhang X, Yang F, et al. Disposition of nanoparticle-based delivery system via inner ear administration. Curr Drug Metab. 2010;11:886–897.
  • Li L, Chao T, Brant J, et al. Advances in nano-based inner ear delivery systems for the treatment of sensorineural hearing loss. Adv Drug Deliv Rev. 2016;108:2–12.
  • Pritz CO, Dudas J, Rask-Andersen H, et al. Nanomedicine strategies for drug delivery to the ear. Nanomedicine (Lond). 2013;8:1155–1172.
  • Danhier F, Ansorena E, Silva JM, et al. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release. 2012;161:505–522.
  • Zhang K, Tang X, Zhang J, et al. PEG-PLGA copolymers: their structure and structure-influenced drug delivery applications. J Control Release. 2014;183:77–86.
  • Tamura T, Kita T, Nakagawa T, et al. Drug delivery to the cochlea using PLGA nanoparticles. Laryngoscope. 2005;115:2000–2005.
  • Ge X, Jackson RL, Liu J, et al. Distribution of PLGA nanoparticles in chinchilla cochleae. Otolaryngol Head Neck Surg. 2007;137:619–623.
  • Cai H, Wen X, Wen L, et al. Enhanced local bioavailability of single or compound drugs delivery to the inner ear through application of PLGA nanoparticles via round window administration. Int J Nanomed. 2014;9:5591–5601.
  • Zhang X, Chen G, Wen L, et al. Novel multiple agents loaded PLGA nanoparticles for brain delivery via inner ear administration: in vitro and in vivo evaluation. Eur J Pharm Sci. 2013;48:595–603.
  • Salt AN, Hartsock J, Plontke S, et al. Distribution of dexamethasone and preservation of inner ear function following intratympanic delivery of a gel-based formulation. Audiol Neurotol. 2011;16:323–335.
  • Engleder E, Honeder C, Klobasa J, et al. Preclinical evaluation of thermoreversible triamcinolone acetonide hydrogels for drug delivery to the inner ear. Int J Pharm. 2014;471:297–302.
  • Luo J, Xu L. Distribution of gentamicin in inner ear after local administration via a chitosan glycerophosphate hydrogel delivery system. Ann Otol Rhinol Laryngol. 2012;121:208–216.
  • van de Heyning P, Muehlmeier G, Cox T, et al. Efficacy and safety of AM-101 in the treatment of acute inner ear tinnitus-a double-blind, randomized, placebo-controlled phase II study. Otol Neurotol. 2014;35:589–597.
  • Chen G, Hou SX, Liu J, et al. In vivo distribution and pharmacokinetics of dexamethasone sodium phosphate thermosensitive in situ gel following intratympanic injection. Sichuan Da Xue Xue Bao Yi Xue Ban. 2006;37:456–459.
  • Ruel-Gariepy E, Chenite A, Chaput C, et al. Characterization of thermosensitive chitosan gels for the sustained delivery of drugs. Int J Pharm. 2000;203:89–98.
  • Tahrir FG, Ganji F, Ahooyi TM. Injectable thermosensitive chitosan/glycerophosphate-based hydrogels for tissue engineering and drug delivery applications: a review. Ddf. 2015;9:107–120.
  • Paulson DP, Abuzeid W, Jiang H, et al. A novel controlled local drug delivery system for inner ear disease. Laryngoscope. 2008;118:706–711.
  • Saber A, Strand SP, Ulfendahl M. Use of the biodegradable polymer chitosan as a vehicle for applying drugs to the inner ear. Eur J Pharm Sci. 2010;39:110–115.
  • Namburi BVN, Yadav HKS, Hemanth S, et al. Formulation and evaluation of polymeric nanoparticulate gel for topical delivery. Int J Polymeric Mater Polymeric Biomater. 2014;63:476–485.
  • Hu YF, Liu ZQ. Evaluation of brain protein hydrolysate for the treatment of sudden deafness. Gansu Zhong Yi Xue Yuan Xue Bao. 2000;17:28–30.
  • Lee KY, Nakagawa T, Okano T, et al. Novel therapy for hearing loss: delivery of insulin-like growth factor 1 to the cochlea using gelatin hydrogel. Otol Neurotol. 2007;28:976–981.
  • Omotehara Y, Hakuba N, Hato N, et al. Protection against ischemic cochlear damage by intratympanic administration of AM-111. Otol Neurotl. 2011;32:1422–1427.
  • Jin CH. Recent advances in drug treatment of sudden deafness. Zhongguo Yi Yuan Yao Xue Za Zhi. 1997;17:85–86.
  • Chen G, Mu L, Lu CY, et al. Preliminary study on brain-targeted delivery of human interferon α-2b following intratympanic administration. Zhongguo Yao Xue Za Zhi. 2010;22:1922–1925.
  • Wang W. Advanced protein formulations. Protein Sci. 2015;24:1031–1039.
  • Teekamp N, Duque LF, Frijlink HW, et al. Production methods and stabilization strategies for polymer-based nanoparticles and microparticles for parenteral delivery of peptides and proteins. Expert Opin Drug Deliv. 2015;12:1311–1331.
  • Li Z, Cho S, Kwon IC, et al. Preparation and characterization of glycol chitin as a new thermogelling polymer for biomedical applications. Carbohydr Polym. 2013;92:2267–2275.
  • Chen X, Li X, Zhou Y, et al. Chitosan-based thermosensitive hydrogel as a promising ocular drug delivery system: preparation, characterization, and in vivo evaluation. J Biomater Appl. 2012;27:391–402.
  • Cho J, Heuzey MC, Begin A, et al. Effect of urea on solution behavior and heat-induced gelation of chitosan-β-glycerophosphate. Carbohydr Polym. 2006;63:507–518.
  • Chenite A, Buschmann M, Wang D, et al. Rheological characterization of thermogelling chitosan/glycerol-phosphate solutions. Carbohydr Polym. 2001;46:39–47.
  • Zhou HY, Chen XG, Kong M, et al. Effect of molecular weight and degree of chitosan deacetylation on the preparation and characteristics of chitosan thermosensitive hydrogel as a delivery system. Carbohydr Polym. 2008;73:265–273.
  • Raftery R, O’Brien FJ, Cryan SA. Chitosan for gene delivery and orthopedic tissue engineering applications. Molecules. 2013;18:5611–5647.
  • Lü S, Liu M, Ni B. An injectable oxidized carboxymethylcellulose/N-succinyl-chitosan hydrogel system for protein delivery. Chem Eng J. 2010;160:779–787.
  • Zarzycki R, Rogacki G, Modrzejewska Z, et al. Modeling of drug (Albumin) release from thermosensitive chitosan hydrogels. Ind Eng Chem Res. 2011;50:5866–5872.
  • Peng Q, Sun X, Gong T, et al. Injectable and biodegradable thermosensitive hydrogels loaded with PHBHHx nanoparticles for the sustained and controlled release of insulin. Acta Biomater. 2013;9:5063–5069.
  • Senyigit ZA, Karavana SY, Ilem-Ozdemir D, et al. Design and evaluation of an intravesical delivery system for superficial bladder cancer: preparation of gemcitabine HCl-loaded chitosan-thioglycolic acid nanoparticles and comparison of chitosan/poloxamer gels as carriers. Int J Nanomed. 2015;10:6493–6507.
  • Salt AN, Kellner C, Hale S. Contamination of perilymph sampled from the basal cochlear turn with cerebrospinal fluid. Hear Res. 2003;182:24–33.
  • Salt AN. Pharmacokinetics of drug entry into cochlear fluids. Volta Rev. 2005;105:277–298.
  • Vaishya R, Khurana V, Patel S, et al. Long-term delivery of protein therapeutics. Expert Opin Drug Deliv. 2015;12:415–440.
  • Chelikh L, Teixeira M, Martin C, et al. High variability of perilymphatic entry of neutral molecules through the round window. Acta Otolaryngol. 2003;123:199–202.
  • Yoshioka M, Naganawa S, Sone M, et al. Individual differences in the permeability of the round window: evaluating the movement of intratympanic gadolinium into the inner ear. Otol Neurotol. 2009;30:645–648.
  • Horie RT, Sakamoto T, Nakagawa T, et al. Sustained delivery of lidocaine into the cochlea using poly lactic/glycolic acid microparticles. Laryngoscope. 2010;120:377–383.
  • Rivera T, Sanz L, Camarero G, et al. Drug delivery to the inner ear: strategies and their therapeutic implications for sensorineural hearing loss. Curr Drug Deliv. 2012;9:231–242.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.