339
Views
15
CrossRef citations to date
0
Altmetric
Research Article

Feasibility of electrospray deposition for rapid screening of the cocrystal formation and single step, continuous production of pharmaceutical nanococrystals

, , &
Pages 1034-1047 | Received 30 Oct 2017, Accepted 16 Jan 2018, Published online: 01 Feb 2018

References

  • Kawabata Y, Wada K, Nakatani M, et al. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications. Int J Pharm. 2011;420:1–10.
  • Möschwitzer JP. Drug nanocrystals in the commercial pharmaceutical development process. Int J Pharm. 2013;453:142–156.
  • Hamishehkar H, Emami S, Lamei B, et al. Evaluation of solubility and dissolution profile of itraconazole after cogrinding with various hydrophilic carriers. J Drug Deliv Sci Technol. 2014;24:653–658.
  • Kalepu S, Nekkanti V. Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharm Sin B. 2015;5:442–453.
  • Aitipamula S, Banerjee R, Bansal AK, et al. Polymorphs, salts, and cocrystals: what’s in a name? Cryst Growth Des. 2012;12:2147–2152.
  • Thakuria R, Delori A, Jones W, et al. Pharmaceutical cocrystals and poorly soluble drugs. Int J Pharm. 2013;453:101–125.
  • Remenar JF, Morissette SL, Peterson ML, et al. Crystal engineering of novel cocrystals of a triazole drug with 1,4-dicarboxylic acids. J Am Chem Soc. 2003;125:8456–8457.
  • Trask AV, Motherwell WS, Jones W. Physical stability enhancement of theophylline via cocrystallization. Int J Pharm. 2006;320:114–123.
  • Karki S, Friščić T, Fábián L, et al. Improving mechanical properties of crystalline solids by cocrystal formation: new compressible forms of paracetamol. Adv Mater. 2009;21:3905–3909.
  • Weyna DR, Shattock T, Vishweshwar P, et al. Synthesis and structural characterization of cocrystals and pharmaceutical cocrystals: mechanochemistry vs slow evaporation from solution. Cryst Growth Des. 2009;9:1106–1123.
  • Shayanfar A, Asadpour-Zeynali K, Jouyban A. Solubility and dissolution rate of a carbamazepine–cinnamic acid cocrystal. J Mol Liq. 2013;187:171–176.
  • Friščic´ T, Jones W, Recent advances in understanding the mechanism of cocrystal formation via grinding. Cryst Growth Des. 2009;9:1621–1637.
  • Bysouth SR, Bis JA, Igo D. Cocrystallization via planetary milling: enhancing throughput of solid-state screening methods. Int J Pharm. 2011;411:169–171.
  • Bučar D-K, Henry RF, Duerst RW, et al. A 1: 1 cocrystal of caffeine and 2-hydroxy-1-naphthoic acid obtained via a slurry screening method. J Chem Crystallogr. 2010;40:933–939.
  • Rager T, Hilfiker R. Cocrystal formation from solvent mixtures. Cryst Growth Des. 2010;10:3237–3241.
  • Duarte Í, Andrade R, Pinto JF, et al. Green production of cocrystals using a new solvent-free approach by spray congealing. Int J Pharm. 2016;506:68–78.
  • Douroumis D, Ross SA, Nokhodchi A. Advanced methodologies for cocrystal synthesis. Adv Drug Deliv Rev. 2017;117:178–195.
  • Patil SP, Modi SR, Bansal AK. Generation of 1:1 Carbamazepine: Nicotinamide cocrystals by spray drying. Eur J Pharm Sci. 2014;62:251–257.
  • Dhumal RS, Kelly AL, York P, et al. Cocrystalization and simultaneous agglomeration using hot melt extrusion. Pharm Res. 2010;27:2725–2733.
  • Padrela L, Rodrigues MA, Velaga SP, et al. Formation of indomethacin–saccharin cocrystals using supercritical fluid technology. Eur J Pharm Sci. 2009;38:9–17.
  • Moradiya HG, Islam MT, Scoutaris N, et al. Continuous manufacturing of high quality pharmaceutical cocrystals integrated with process analytical tools for in-line process control. Cryst Growth Des. 2016;16:3425–3434.
  • Müllers KC, Paisana M, Wahl MA. Simultaneous formation and micronization of pharmaceutical cocrystals by rapid expansion of supercritical solutions (RESS). Pharm Res. 2015;32:702–713.
  • Alhalaweh A, Kaialy W, Buckton G, et al. Theophylline cocrystals prepared by spray drying: physicochemical properties and aerosolization performance. AAPS PharmSciTech. 2013;14:265–276.
  • Sander JR, Bučar DK, Henry RF, et al. Pharmaceutical nano‐cocrystals: sonochemical synthesis by solvent selection and use of a surfactant. Angew Chem Int Ed. 2010;49:7284–7288.
  • Spitzer D, Risse B, Schnell F, et al. Continuous engineering of nano-cocrystals for medical and energetic applications. Sci Rep. 2014;4:6575
  • Karashima M, Kimoto K, Yamamoto K, et al. A novel solubilization technique for poorly soluble drugs through the integration of nanocrystal and cocrystal technologies. Eur J Pharm Biopharm. 2016;107:142–150.
  • Mohammadi G, Hemati V, Nikbakht M-R, et al. In vitro and in vivo evaluation of clarithromycin–urea solid dispersions prepared by solvent evaporation, electrospraying and freeze drying methods. Powder Technol. 2014;257:168–174.
  • Peltonen L, Valo H, Kolakovic R, et al. Electrospraying, spray drying and related techniques for production and formulation of drug nanoparticles. Expert Opin Drug Deliv. 2010;7:705–719.
  • Patil S, Ujalambkar V, Mahadik A. Electrospray technology as a probe for cocrystal synthesis: influence of solvent and coformer structure. J Drug Deliv Sci Technol. 2017;39:217–222.
  • Patil S, Kulkarni J, Mahadik K. Exploring the potential of electrospray technology in cocrystal synthesis. Ind Eng Chem Res. 2016;55:8409–8414.
  • Jahangiri A, Davaran S, Fayyazi B, et al. Application of electrospraying as a one-step method for the fabrication of triamcinolone acetonide-PLGA nanofibers and nanobeads. Colloids Surf B Biointerfaces. 2014;123:219–224.
  • Wang M, Rutledge GC, Myerson AS, et al. Production and characterization of carbamazepine nanocrystals by electrospraying for continuous pharmaceutical manufacturing. J Pharm Sci. 2012;101:1178–1188.
  • Radacsi N, Ambrus R, Szunyogh T, et al. Electrospray crystallization for nanosized pharmaceuticals with improved properties. Cryst Growth Des. 2012;12:3514–3520.
  • Castro RA, Ribeiro JD, Maria TM, et al. Naproxen cocrystals with pyridinecarboxamide isomers. Cryst Growth Des. 2011;11:5396–5404.
  • Basavoju S, Boström D, Velaga SP. Indomethacin–saccharin cocrystal: design, synthesis and preliminary pharmaceutical characterization. Pharm Res. 2008;25:530–541.
  • Zhang Y, Huo M, Zhou J, et al. DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. AAPS J. 2010;12:263–271.
  • Khan K. The concept of dissolution efficiency. J Pharm Pharmacol. 1975;27:48–49.
  • Smeets A, Clasen C, Van den Mooter G. Electrospraying of polymer solutions: study of formulation and process parameters. Eur J Pharm Biopharm. 2017;119:114–124.
  • Alhalaweh A, Velaga SP. Formation of cocrystals from stoichiometric solutions of incongruently saturating systems by spray drying. Cryst Growth Des. 2010;10:3302–3305.
  • Chun N-H, Wang I-C, Lee M-J, et al. Characteristics of indomethacin–saccharin (IMC–SAC) co-crystals prepared by an anti-solvent crystallization process. Eur J Pharm Biopharm. 2013;85:854–861.
  • Buanz AB, Telford R, Scowen IJ, et al. Rapid preparation of pharmaceutical co-crystals with thermal ink-jet printing. CrystEngComm. 2013;15:1031–1035.
  • Scoutaris N, Nion A, Hurt A, et al. Jet dispensing as a high throughput method for rapid screening and manufacturing of cocrystals. CrystEngComm. 2016;18:5079–5082.
  • Bag PP, Patni M, Reddy CM. A kinetically controlled crystallization process for identifying new co-crystal forms: fast evaporation of solvent from solutions to dryness. CrystEngComm. 2011;13:5650–5652.
  • Surwase SA, Boetker JP, Saville D, et al. Indomethacin: new polymorphs of an old drug. Mol Pharm. 2013;10:4472–4480.
  • Aceves‐Hernandez J, Nicolás‐Vázquez I, Aceves F, et al. Indomethacin polymorphs: experimental and conformational analysis. J Pharm Sci. 2009;98:2448–2463.
  • Nyström M, Murtomaa M, Salonen J. Fabrication of amorphous pharmaceutical materials by electrospraying into reduced pressure. J Electrostat. 2011;69:351–356.
  • Payab S, Jafari-Aghdam N, Barzegar-Jalali M, et al. Preparation and physicochemical characterization of the azithromycin-Eudragit RS100 nanobeads and nanofibers using electrospinning method. J Drug Deliv Sci Technol. 2014;24:585–590.
  • Jayasankar A, Somwangthanaroj A, Shao ZJ, et al. Cocrystal formation during cogrinding and storage is mediated by amorphous phase. Pharm Res. 2006;23:2381–2392.
  • Yu L. Amorphous pharmaceutical solids: preparation, characterization and stabilization. Adv Drug Deliv Rev. 2001;48:27–42.
  • Lai S, Guo J, Petrova V, et al. Size-dependent melting properties of small tin particles: nanocalorimetric measurements. Phys Rev Lett. 1996;77:99–102.
  • Zhang J, Huang Y, Liu D, et al. Preparation of apigenin nanocrystals using supercritical antisolvent process for dissolution and bioavailability enhancement. Eur J Pharm Sci. 2013;48:740–747.
  • Scholten E, Dhamankar H, Bromberg L, et al. Electrospray as a tool for drug micro- and nanoparticle patterning. Langmuir. 2011;27:6683–6688.
  • Chaudhary R, Patel C, Sevak V, et al. Effect of Kollidon VA® 64 particle size and morphology as directly compressible excipient on tablet compression properties. Drug Dev Ind Pharm. 2018;44:19–29.
  • Maghsoodi M, Taghizadeh O, Martin GP, et al. Particle design of naproxen-disintegrant agglomerates for direct compression by a crystallo-co-agglomeration technique. Int J Pharm. 2008;351:45–54.
  • Jung MS, Kim JS, Kim MS, et al. Bioavailability of indomethacin-saccharin cocrystals. J Pharm Pharmacol. 2010;62:1560–1568.
  • De Smet L, Saerens L, De Beer T, et al. Formulation of itraconazole nanococrystals and evaluation of their bioavailability in dogs. Eur J Pharm Biopharm. 2014;87:107–113.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.