343
Views
25
CrossRef citations to date
0
Altmetric
Research Article

Preparation of an optimized ciprofloxacin-loaded chitosan nanomicelle with enhanced antibacterial activity

, , , &
Pages 1273-1284 | Received 28 Oct 2017, Accepted 09 Feb 2018, Published online: 02 Mar 2018

References

  • Allahverdiyev AM, Kon KV, Abamor ES, et al. Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents. Expert Rev Anti-Infect Ther. 2011;9:1035–1052.
  • Huh AJ, Kwon YJ. Nanoantibiotics: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release. 2011;156:128–145.
  • Hajipour MJ, Fromm KM, Ashkarran AA, et al. Antibacterial properties of nanoparticles. Trends Biotechnol. 2012;30:499–511.
  • Sharma A, Kumar Arya D, Dua M, et al. Nano-technology for targeted drug delivery to combat antibiotic resistance. Expert Opin Drug Deliv. 2012;9:1325–1332.
  • Moazeni E, Gilani K, Sotoudegan F, et al. Formulation and in vitro evaluation of ciprofloxacin containing niosomes for pulmonary delivery. J Microencapsul. 2010;27:618–627.
  • Guillot E, Sermet I, Ferroni A, et al. Suboptimal ciprofloxacin dosing as a potential cause of decreased Pseudomonas aeruginosa susceptibility in children with cystic fibrosis. Pharmacotherapy. 2010;30:1252–1258.
  • Ong HX, Traini D, Cipolla D, et al. Liposomal nanoparticles control the uptake of ciprofloxacin across respiratory epithelia. Pharm Res. 2012;29:3335–3346.
  • Dillen K, Vandervoort J, Van den Mooter G, et al. Evaluation of ciprofloxacin-loaded Eudragit RS100 or RL100/PLGA nanoparticles. Int J Pharm. 2006;314:72–82.
  • Zhang L, Pornpattananangkul D, Hu C-M, et al. Development of nanoparticles for antimicrobial drug delivery. Curr Med Chem. 2010;17:585–594.
  • Croy S, Kwon G. Polymeric micelles for drug delivery. Curr Pharm Des. 2006;12:4669–4684.
  • Pepić I, Lovrić J, Filipović-Grčić J. How do polymeric micelles cross epithelial barriers? Eur J Pharm Sci. 2013;50:42–55.
  • Zhang N, Wardwell PR, Bader RA. Polysaccharide-based micelles for drug delivery. Pharmaceutics. 2013;5:329–352.
  • Jiang G-B, Quan D, Liao K, et al. Preparation of polymeric micelles based on chitosan bearing a small amount of highly hydrophobic groups. Carbohydr Polym. 2006;66:514–520.
  • Hernandez-Lauzardo AN, Bautista-Baños S, Velazquez-Del Valle MG, et al. Antifungal effects of chitosan with different molecular weights on in vitro development of Rhizopus stolonifer (Ehrenb.: Fr.) Vuill. Carbohydr Polym. 2008;73:541–547.
  • Elsabee MZ, Morsi RE, Al-Sabagh A. Surface active properties of chitosan and its derivatives. Colloids Surf B Biointerfaces. 2009;74:1–16.
  • Mahmoudzadeh M, Fassihi A, Emami J, et al. Physicochemical, pharmaceutical and biological approaches toward designing optimized and efficient hydrophobically modified chitosan-based polymeric micelles as a nanocarrier system for targeted delivery of anticancer drugs. J Drug Target. 2013;21:693–709.
  • Tan ML, Choong PF, Dass CR. Doxorubicin delivery systems based on chitosan for cancer therapy. J Pharm Pharmacol. 2009;61:131–142.
  • Aranaz I, Harris R, Heras A. Chitosan amphiphilic derivatives. Chemistry and applications. COC. 2010;14:308.
  • Liu L, Venkatraman SS, Yang YY, et al. Polymeric micelles anchored with TAT for delivery of antibiotics across the blood-brain barrier. Biopolymers. 2008;90:617–623.
  • You J, Hu F-Q, Du Y-Z, et al. Polymeric micelles with glycolipid-like structure and multiple hydrophobic domains for mediating molecular target delivery of paclitaxel. Biomacromolecules. 2007;8:2450–2456.
  • Du Y-Z, Wang L, Yuan H, et al. Preparation and characteristics of linoleic acid-grafted chitosan oligosaccharide micelles as a carrier for doxorubicin. Colloids Surf B Biointerfaces. 2009;69:257–263.
  • Du Y-Z, Lu P, Zhou J-P, et al. Stearic acid grafted chitosan oligosaccharide micelle as a promising vector for gene delivery system: factors affecting the complexation. Int J Pharm. 2010;391:260–266.
  • Ye Y-Q, Yang F-L, Hu F-Q, et al. Core-modified chitosan-based polymeric micelles for controlled release of doxorubicin. Int J Pharm. 2008;352:294–301.
  • Huang X, Huang X, Jiang X-H, et al. In vitro antitumour activity of stearic acid-g-chitosan oligosaccharide polymeric micelles loading podophyllotoxin. J Microencapsul. 2012;29:1–8.
  • Gilani K, Moazeni E, Ramezanli T, et al. Development of respirable nanomicelle carriers for delivery of amphotericin B by jet nebulization. J Pharm Sci. 2011;100:252–259.
  • Zhao M-D, Sun Y-M, Fu G-F, et al. Gene therapy of endometriosis introduced by polymeric micelles with glycolipid-like structure. Biomaterials. 2012;33:634–643.
  • Zhao M-D, Hu F-Q, Du Y-Z, et al. Coadministration of glycolipid-like micelles loading cytotoxic drug with different action site for efficient cancer chemotherapy. Nanotechnology. 2009;20:055102.
  • Hu F-Q, Meng P, Dai Y-Q, et al. PEGylated chitosan-based polymer micelle as an intracellular delivery carrier for anti-tumor targeting therapy. Eur J Pharm Biopharm. 2008;70:749–757.
  • Senso A, Franco P, Oliveros L, et al. Characterization of doubly substituted polysaccharide derivatives. Carbohydr Res. 2000;329:367–376.
  • Huo M, Zou A, Yao C, et al. Somatostatin receptor-mediated tumor-targeting drug delivery using octreotide-PEG-deoxycholic acid conjugate-modified N-deoxycholic acid-O, N-hydroxyethylation chitosan micelles. Biomaterials. 2012;33:6393–6407.
  • Zhou Y-Y, Du Y-Z, Wang L, et al. Preparation and pharmacodynamics of stearic acid and poly (lactic-co-glycolic acid) grafted chitosan oligosaccharide micelles for 10-hydroxycamptothecin. Int J Pharm. 2010;393:144–152.
  • Shen Y-B, Guan Y-X, Yao S-J. Supercritical fluid assisted production of micrometric powders of the labile trypsin and chitosan/trypsin composite microparticles. Int J Pharm. 2015;489:226–236.
  • Xie Y-T, Du Y-Z, Yuan H, et al. Brain-targeting study of stearic acid–grafted chitosan micelle drug-delivery system. Int J Nanomedicine. 2012;7:3235.
  • Glisoni RJ, Molina M, Calderón M, et al. Chitosan-g-oligo (epsilon-caprolactone) polymeric micelles: microwave-assisted synthesis and physicochemical and cytocompatibility characterization. J Mater Chem B. 2015;3:4853–4864.
  • Moazeni E, Gilani K, Najafabadi AR, et al. Preparation and evaluation of inhalable itraconazole chitosan based polymeric micelles. Daru. 2012;20:85.
  • Chen L, Sha X, Jiang X, et al. Pluronic P105/F127 mixed micelles for the delivery of docetaxel against Taxol-resistant non-small cell lung cancer: optimization and in vitro, in vivo evaluation. Int J Nanomedicine. 2013;8:73–84.
  • Wei X-H, Niu Y-P, Xu Y-Y, et al. Salicylic acid-grafted chitosan oligosaccharide nanoparticle for paclitaxel delivery. J Bioact Compat Polym. 2010;25:319–335.
  • Liu C, Shi J, Dai Q, et al. In-vitro and in-vivo evaluation of ciprofloxacin liposome for pulmonary administration. Drug Dev Ind Pharm. 2015;41:272–278.
  • Jain D, Banerjee R. Comparison of ciprofloxacin hydrochloride‐loaded protein, lipid, and chitosan nanoparticles for drug delivery. J Biomed Mater Res. 2008;86:105–112.
  • Daman Z, Ostad S, Amini M, et al. Preparation, optimization and in vitro characterization of stearoyl-gemcitabine polymeric micelles: a comparison with its self-assembled nanoparticles. Int J Pharm. 2014;468:142–151.
  • Peng X, Wang J, Song H, et al. Optimized preparation of celastrol-loaded polymeric nanomicelles using rotatable central composite design and response surface methodology. J Biomed Nanotechnol. 2012;8:491–499.
  • Wei Z, Hao J, Yuan S, et al. Paclitaxel-loaded Pluronic P123/F127 mixed polymeric micelles: formulation, optimization and in vitro characterization. Int J Pharm. 2009;376:176–185.
  • CLSI. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; M07-A9. Wayne (PA): CLSI; 2012.
  • Sahu SK, Maiti S, Maiti TK, et al. Hydrophobically modified carboxymethyl chitosan nanoparticles targeted delivery of paclitaxel. J Drug Target. 2011;19:104–113.
  • Li YY, Chen XG, Yu LM, et al. Aggregation of hydrophobically modified chitosan in solution and at the air–water interface. J Appl Polym Sci. 2006;102:1968–1973.
  • Batrakova E, Lee S, Li S, et al. Fundamental relationships between the composition of pluronic block copolymers and their hypersensitization effect in MDR cancer cells. Pharm Res. 1999;16:1373–1379.
  • Kalia S, Sabaa M. Polysaccharide based graft copolymers. Berlin: Springer; 2013.
  • Wu Y, Zheng Y, Yang W, et al. Synthesis and characterization of a novel amphiphilic chitosan–polylactide graft copolymer. Carbohydr Polym. 2005;59:165–171.
  • Zhang C, Ding Y, Yu LL, et al. Polymeric micelle systems of hydroxycamptothecin based on amphiphilic N-alkyl-N-trimethyl chitosan derivatives. Colloids Surf B Biointerfaces. 2007;55:192–199.
  • Hu F-Q, Ren G-F, Yuan H, et al. Shell cross-linked stearic acid grafted chitosan oligosaccharide self-aggregated micelles for controlled release of paclitaxel. Colloids Surf B Biointerfaces. 2006;50:97–103.
  • Xiangyang X, Ling L, Jianping Z, et al. Preparation and characterization of N-succinyl-N′-octyl chitosan micelles as doxorubicin carriers for effective anti-tumor activity. Colloids Surf B Biointerfaces. 2007;55:222–228.
  • Hancock RE. Resistance mechanisms in Pseudomonas aeruginosa and other nonfermentative gram-negative bacteria. Clin Infect Dis. 1998;27(1):S93–S99.
  • Lambert P. Mechanisms of antibiotic resistance in Pseudomonas aeruginosa. J Royal Soc Med. 2002;95(41):22.
  • Eaton P, Fernandes JC, Pereira E, et al. Atomic force microscopy study of the antibacterial effects of chitosans on Escherichia coli and Staphylococcus aureus. Ultramicroscopy. 2008;108:1128–1134.
  • Chung Y-C, Chen C-Y. Antibacterial characteristics and activity of acid-soluble chitosan. Bioresour Technol. 2008;99:2806–2814.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.