240
Views
17
CrossRef citations to date
0
Altmetric
Research Article

Synthesis of nanomedicines by nanohybrids conjugating ginsenosides with auto-targeting and enhanced MRI contrast for liver cancer therapy

, , &
Pages 1307-1316 | Received 17 Jul 2017, Accepted 28 Feb 2018, Published online: 20 Mar 2018

References

  • Zhou B, Yan Z, Liu R, et al. Prospective study of transcatheter arterial chemoembolization (TACE) with ginsenoside Rg3 versus TACE alone for the treatment of patients with advanced hepatocellular carcinoma. Radiology. 2016;280:630.
  • Kim D, Jung K, Lee D, et al. 20(S)-Ginsenoside Rg3 is a novel inhibitor of autophagy and sensitizes hepatocellular carcinoma to doxorubicin. Oncotarget. 2014;5:4438–4451.
  • Stewart B, Wild CP. World Cancer Report 2014. International Agency for Research on Cancer WHO. 2014.
  • Chen W, Zheng R, Baade PD, et al. Cancer Statistics in China, 2015. Ca Cancer J Clin. 2016;6:15–132.
  • Breitbach C, Moon A, Burke J, et al. A phase 2, open-label, randomized study of Pexa-Vec (JX-594) administered by intratumoral injection in patients with unresectable primary hepatocellular carcinoma. Methods Mol Biol. 2015;1317:343–357.
  • Jiang J, Chen X, Chen X, et al. Ginsenoside Rg3 inhibit hepatocellular carcinoma growth via intrinsic apoptotic pathway. World J Gastroenterol. 2011;17:3174–3181.
  • Teowab Y, Valiyaveettil S. Active targeting of cancer cells using folic acid-conjugated platinum nanoparticles. Nanoscale. 2012;2:2607–2613.
  • Bhattacharyya S, Kudgus RA, Bhattacharya R, et al. Inorganic nanoparticles in cancer therapy. Pharm Res. 2011;28:237–259.
  • Bogart LK, Pourroy G, Murphy CJ, et al. Nanoparticles for imaging, sensing, and therapeutic intervention. ACS Nano. 2014;8:3107–3122.
  • Lee N, Yoo D, Ling D, et al. Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chem Rev. 2015;115:10637–10689.
  • Perez-Quintanilla D, Gomez-Ruiz S, Zeljko Z, et al. A new generation of anticancer drugs: mesoporous materials modified with titanocene complexes. Chem Eur J. 2009;15:5588–5597.
  • Gao J, Gu H, Xu B. Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc Chem Res. 2009;42:1097–1107.
  • Laprise-Pelletier M, Lagueux J, Côté M-F, et al. Low-dose prostate cancer brachytherapy with radioactive palladium–gold nanoparticles. Adv Healthcare Mater. 2017;6:1601120.
  • Manshian BB, Jimenez J, Himmelreich U, et al. Presence of an immune system increases anti-tumor effect of Ag nanoparticle treated mice. Adv Healthcare Mater. 2017;6:1601099.
  • Peng H, Tang J, Zheng R, et al. Nuclear-targeted multifunctional magnetic nanoparticles for photothermal therapy. Adv Healthcare Mater. 2017;6:1601289.
  • D'Mello SR, Cruz CN, Chen M-L, Kapoor M, Lee SL, Tyne KM. The evolving landscape of drug products containing nanomaterials in the United States. Nat Nanotechnol. 2017;12:523–529.
  • Asharani PV, Sethu S, Vadukumpully S, et al. Investigations on the structural damage in human erythrocytes exposed to silver, gold, and platinum nanoparticles. Adv Funct Mater. 2010;20:1233–1242.
  • Cole LE, Ross RD, Tilley JM, et al. Gold nanoparticles as contrast agents in X-ray imaging and computed tomography. Nanomedicine (Lond.). 2015;10:321–341.
  • Gao J, Liang G, Zhang B, et al. FePt@CoS2Yolk-Shell nanocrystals as a potent agent to kill HeLa cells. J Am Chem Soc. 2009;129:1428–1433.
  • Gao J, Xu B. Applications of nanomaterials inside cells. Nano Today. 2009;4:37–51.
  • Lee N, Cho HR, Hwan M, et al. Multifunctional Fe3O4/TaOx core/shell nanoparticles for simultaneous magnetic resonance imaging and X-ray computed tomography. J Am Chem Soc. 2012;134:10309–10312.
  • López-Alonso J, Diez-Garcia F, Font J, et al. Carbodiimide EDC induces cross-links that stabilize RNase A C-dimer against dissociation: EDC adducts can affect protein net charge, conformation and activity. Bioconjugate Chem. 2009;20:1459–1473.
  • Halloran MJ, Parker CW. The preparation of nucleotide-protein conjugates: carbodiimides as coupling agents. J Immunol. 1996;96:373–378.
  • Valeur E, Bradley M. Amide bond formation: beyond the myth of coupling reagents. Chem Soc Rev. 2009;38:606–631.
  • Leitner A, Joachimiak LA, Unverdorben P, et al. Chemical cross-linking/mass spectrometry targeting acidic residues in proteins and protein complexes. Proc Natl Acad Sci. 2014;111:9455–9460.
  • Głuszyńska A. Biological potential of carbazole derivatives. Eur J Med Chem. 2015;94:405–426.
  • Manickam M, Belloni M, Kumar S, et al. The first hexagonal columnar discotic liquid crystalline carbazole derivatives induced by noncovalent π-π interactions. J Mater Chem. 2001;11:2790–2800.
  • Wong SS. CRC chemistry of protein conjugation and crosslinking. In Wong SS, editor. CRC Press: Boca Raton Florida, 1991;7–45.
  • Minhong J, Sanghoon L, Jae K, et al. Physical limits of pure superparamagnetic Fe3O4 nanoparticles for a local hyperthermia agent in nanomedicine. Appl Phys Lett. 2012;100:092406.
  • Hu B, Wang S, Du Q. Traditional Chinese medicine for prevention and treatment of hepatocarcinoma: from bench to bedside. World J Hepatol. 2015;7:1209–1232.
  • Weaver BA. How Taxol/paclitaxel kills cancer cells. Mol Biol Cell. 2014;25:2677–2681.
  • Ibrahim NK, Desai N, Legha S, et al. Phase I and pharmacokinetic study of ABI-007, a Cremophor-free, protein-stabilized, nanoparticle formulation of paclitaxel. Clin Cancer Res. 2002;8:1038–1044.
  • National Cancer Institute. FDA approval for paclitaxel albumin-stabilized nanoparticleformulation. Available from: https://www.cancer.gov/about-cancer/treatment/drugs/fda-nanoparticle-paclitaxel 2013.
  • Lee J, Jung K, Morgan M, et al. Sensitization of TRAIL-induced cell death by 20(S)-ginsenoside Rg3 via CHOP-mediated DR5 upregulation in human hepatocellular carcinoma cells. Mol Cancer Ther. 2013;12:274–285.
  • Jiang J, Chen X, Chen X, et al. Ginsenoside Rg3 inhibit hepatocellular carcinoma growth via intrinsic apoptotic pathway. World J Gastroenterol. 2011;17:3605–3613.
  • He F, Su X-L, Lu M-m, et al. Comparative pharmacokinetics of ginsenoside Rg3 and ginsenoside Rh2 after oral administration of ginsenoside Rg3 in normal and walker 256 tumor-bearing Rats. Phcog Mag. 2016;12:21–24.
  • Wang H, Zou H, Kong L, et al. Determination of ginsenoside Rg3 in plasma by solid-phase extraction and high-performance liquid chromatography for pharmacokinetic study. J Chromatogr B Biomed Sci Appl. 1999;731:403–409.
  • Naldini L. Gene therapy returns to centre stage. Nature. 2015;526:351–360.
  • Galanti M, Fanelli D, Piazza F. Conformation-controlled binding kinetics of antibodies. Sci Rep. 2016;6:18976.
  • Gerdesa MJ, Sevinsky CJ, Sood A. Highly multiplexed single-cell analysis of formalinfixed, paraffin-embedded cancer tissue. PNAS. 2013;110:11982–11987.
  • Song Y, Wang R, Rong R, et al. Synthesis of well-dispersed aqueous-phase magnetite nanoparticles and their metabolism as MRI contrast agent for reticuloendothelial system. Eur J Inorg Chem. 2011;22:3303–3313.
  • Wang J, Zhao K, Shen X, et al. Microfluidic synthesis of ultra-small magnetic nanohybrids for enhanced magnetic resonance imaging. J Mater Chem C. 2015;3:12418–12429.
  • Huang X, El-Sayed IH, Qian W, et al. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc. 2006;128:2115–2120.
  • Chen Y, Li Z, Wang H, et al. IR-780 loaded phospholipid mimicking homopolymeric micelles for near-ir imaging and photothermal therapy of pancreatic cancer. ACS Appl Mater Interfaces. 2016;8:6852–6858.
  • Gao Z, Liu X, Wang Y, et al. Facile one-pot synthesis of Fe3O4@chitosan nanospheres for MRI and fluorescence imaging guided chemo-photothermal combinational cancer therapy. Dalton Trans. 2016;45:19519–19528.
  • Salarizadeh P, Javanbakht M, Pourmahdian S, et al. Surface modification of Fe2TiO5 nanoparticles by silane coupling agent: synthesis and application in proton exchange composite membranes. J Colloid Interface Sci. 2016;472:135–144.
  • Wang J, Wang Z, Li S, Wang R, Song Y. Surface and interface engineering of FePt/C nanocatalysts for electro-catalytic methanol oxidation: enhanced activity and durability. Nanoscale. 2017;9:4066–4075.
  • Wang J, Zhao H, Zhu Y, Song Y. Shape-controlled synthesis of CdSe nanocrystals via a programmed microfluidic process. J Phys Chem C. 2017;121:3567–3572.
  • Song Y, Ji S, Song Y-J, et al. In-situ redox microfluidic synthesis of core-shell nanoparticles and their long-term stability. J Phys Chem C. 2013;117:17274–17284.
  • Shen Y, Posavec L, Bolisetty S, et al. Amyloidfibril systems reduce, stabilize and deliver bioavailable nanosized iron. Nat Nanotechnol. 2017;12:642–647.
  • Min Y, Kyle CR, Tian S, et al. Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy. Nat Nanotechnol. 2017;12:877–882.
  • Chou P-H, Chen S-H, Liao H-K, et al. Nanoprobe-based affinity mass spectrometry for selected protein profiling in human plasma. Anal Chem. 2005;77:5990–5997.
  • Kim HS, Kye YS, Hage DS. Development and evaluation of N-hydroxysuccinimide-activated silica for immobilizing human serum albumin in liquid chromatography columns. J Chromatogr A. 2004;1049:51–61.
  • Yin S, Chen X, Hu C, et al. Nanosecond pulsed electric field (nsPEF) treatment for hepatocellular carcinoma: a novel locoregional ablation decreasing lung metastasis. Cancer Lett. 2014;346:285–291.
  • Song Y, Liu F, Sun B. Preparation, characterization, and application of thin film composite nanofiltration membranes. J Appl Polym Sci. 2005;95:1251–1256.
  • (a) Infrared spectra library – FTIR Library. NICODOM Copyright NICODOM. 2009. Available from: http://www.infrared-spectra.com/. (b) Yun X. Infrared absorption spectrum characteristic peak. 2011. Available from: https://wenku.baidu.com/view/4a88911b964bcf84b9d57bcd.html. (c) Zhou L. The infrared absorption peak characteristics of functional groups. 2015. Available from: https://wenku.baidu.com/view/1a6ef061f90f76c660371a48.html.
  • Griffiths PR, de Haseth JA. Fourier transform infrared spectrometry. 2nd ed. Hoboken (NJ); Canada: John Wiley & Sons; 2007.
  • Song W. Study of the IR characteristic peaks of wild Ginsengs with FT-IR spectroscopy (in Chinese). J TianJin Norm Univ (Nat Sci Ed). 2009;29:63–65.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.