200
Views
16
CrossRef citations to date
0
Altmetric
Research Article

Preparation, characterization, and pharmacokinetics study of a novel genistein-loaded mixed micelles system

, , , , ORCID Icon &
Pages 1536-1542 | Received 30 Nov 2017, Accepted 28 May 2018, Published online: 21 Jun 2018

References

  • Baboota RK, Bishnoi M, Ambalam P, et al. Functional food ingredients for the management of obesity and associated co-morbidities – a review. J Funct Foods. 2013;5:997–1012.
  • Jerome-Morais A, Diamond AM, Wright ME. Dietary supplements and human health: for better or for worse? Mol Nutr Food Res. 2011;55:122–135.
  • Messina M. Soy and health update: evaluation of the clinical and epidemiologic literature. Nutrients. 2016;8:E754.
  • Takagi A, Kano M, Kaga C. Possibility of breast cancer prevention: use of soy isoflavones and fermented soy beverage produced using probiotics. Int J Mol Sci. 2015;16:10907–10920.
  • Mukund V, Mukund D, Sharma V, et al. Genistein: its role in metabolic diseases and cancer. Crit Rev Oncol Hematol. 2017;119:13–22.
  • Uifălean A, Schneider S, Gierok P, et al. The impact of soy isoflavones on MCF-7 and MDA-MB-231 breast cancer cells using a global metabolomic approach. Int J Mol Sci. 2016;17:E1443.
  • Van Duursen MB, Nijmeijer SM, de Morree ES, et al. Genistein induces breast cancer-associated aromatase and stimulates estrogen-dependent tumor cell growth in in vitro breast cancer model. Toxicology. 2011;289:67–73.
  • Pudenz M, Roth K, Gerhauser C. Impact of soy isoflavones on the epigenome in cancer prevention. Nutrients. 2014;6:4218–4272.
  • Ariazi EA, Jordan VC. Estrogen-related receptors as emerging targets in cancer and metabolic disorders. Curr Top Med Chem. 2006;6:203–215.
  • Varinska L, Gal P, Mojzisova G, et al. Soy and breast cancer: focus on angiogenesis. Int J Mol Sci. 2015;16:11728–11749.
  • Qi S. Synergistic effects of genistein and zinc on bone metabolism and the femoral metaphyseal histomorphology in the ovariectomized rats. Biol Trace Elem Res. 2017;183:288–295.
  • Papaj K, Rusin A, Szeja W, et al. Absorption and metabolism of biologically active genistein derivatives in colon carcinoma cell line (Caco-2). Acta Pol Pharm. 2014;71:1037–1044.
  • Deshmane S, Deshmane S, Shelke S, et al. Enhancement of solubility and bioavailability of ambrisentan by solid dispersion using Daucus carota as a drug carrier: formulation, characterization, in vitro, and in vivo study. Drug Dev Ind Pharm. 2018;44:1001–1011.
  • Wang W, Cui C, Li M, et al. Study of a novel disintegrable oleanolic acid-polyvinylpolypyrrolidone solid dispersion. Drug Dev Ind Pharm. 2017;43:1178–1185.
  • Yu F, Ao M, Zheng X, et al. PEG-lipid-PLGA hybrid nanoparticles loaded with berberine-phospholipid complex to facilitate the oral delivery efficiency. Drug Deliv. 2017;24:825–833.
  • Zhang ZH, Wang XP, Ayman WY, et al. Studies on lactoferrin nanoparticles of gambogic acid for oral delivery. Drug Deliv. 2013;20:86–93.
  • Zylberberg C, Matosevic S. Pharmaceutical liposomal drug delivery: a review of new delivery systems and a look at the regulatory landscape. Drug Deliv. 2016;23:3319–3329.
  • Deng J, Zhang Z, Liu C, et al. The studies of N-Octyl-N-Arginine-Chitosan coated liposome as an oral delivery system of cyclosporine A. J Pharm Pharmacol. 2015;67:1363–1370.
  • Yu F, He C, Waddad AY, et al. N-octyl-N-arginine-chitosan (OACS) micelles for gambogic acid oral delivery: preparation, characterization and its study on in situ intestinal perfusion. Drug Dev Ind Pharm. 2014;40:774–782.
  • Tang L, Fu L, Zhu Z, et al. Modified mixed nanomicelles with collagen peptides enhanced oral absorption of Cucurbitacin B: preparation and evaluation. Drug Deliv. 2018;25:862–871.
  • Gaucher G, Satturwar P, Jones MC, et al. Polymeric micelles for oral drug delivery. Eur J Pharm Biopharm. 2010;76:147–158.
  • Ogawa N, Hiramatsu T, Suzuki R, et al. Improvement in the water solubility of drugs with a solid dispersion system by spray drying and hot-melt extrusion with using the amphiphilic polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer and d-mannitol. Eur J Pharm Sci. 2018;111:205–214.
  • Xia D, Yu H, Tao J, et al. Supersaturated polymeric micelles for oral cyclosporine A delivery: the role of Soluplus-sodium dodecyl sulfate complex. Colloids Surf B Biointerfaces. 2016;141:301–310.
  • Jin X, Zhou B, Xue L, et al. Soluplus(®) micelles as a potential drug delivery system for reversal of resistant tumor. Biomed Pharmacother. 2015;69:388–395.
  • Xiong XY, Pan X, Tao L, et al. Enhanced effect of folated pluronic F87-PLA/TPGS mixed micelles on targeted delivery of paclitaxel. Int J Biol Macromol. 2017;103:1011–1018.
  • Beig A, Fine-Shamir N, Porat D, et al. Concomitant solubility-permeability increase: vitamin E TPGS vs. amorphous solid dispersion as oral delivery systems for etoposide. Eur J Pharm Biopharm. 2017;121:97–103.
  • Sun D, Lv X, Wang X, et al. Mixed micelles based on a pH-sensitive prodrug and TPGS for enhancing drug efficacy against multidrug-resistant cancer cells. Colloids Surf B Biointerfaces. 2017;159:419–426.
  • Jin X, Li M, Yin L, et al. Tyroservatide-TPGS-paclitaxel liposomes: tyroservatide as a targeting ligand for improving breast cancer treatment. Nanomedicine. 2017;13:1105–1115.
  • Zhang Z, Cui C, Wei F, et al. Improved solubility and oral bioavailability of apigenin via Soluplus/Pluronic F127 binary mixed micelles system. Drug Dev Ind Pharm. 2017;43:1276–1282.
  • Zhang Z, Lv H, Jia X, et al. Influence of vitamin E tocopherol polyethylene glycol succinate 1000 on intestinal absorption of icariside II. Pharmazie. 2012;67:59–62.
  • Win KY, Feng SS. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials. 2005;26:2713–2722.
  • Kim JT, Barua S, Kim H, et al. Absorption study of genistein using solid lipid microparticles and nanoparticles: control of oral bioavailability by particle sizes. Biomol Ther (Seoul). 2017;25:452–459.
  • Akbari A, Lavasanifar A, Wu J. Interaction of cruciferin-based nanoparticles with Caco-2 cells and Caco-2/HT29-MTX co-cultures. Acta Biomater 2017;17:30631–30631.
  • Zhang Z, Chen Y, Deng J, et al. Solid dispersion of berberine-phospholipid complex/TPGS 1000/SiO2: preparation, characterization and in vivo studies. Int J Pharm. 2014;465:306–316.
  • Watanabe N, Higashi H, Nakamura S, et al. The possible clinical impact of risperidone on P-glycoprotein-mediated transport of tacrolimus: a case report and in vitro study. Biopharm Drug Dispos. 2018;39:30–37.
  • Yan H, Wei P, Song J, et al. Enhanced anticancer activity in vitro and in vivo of luteolin incorporated into long-circulating micelles based on DSPE‐PEG2000 and TPGS. J Pharm Pharmacol. 2016;68:1290–1298.
  • Yang X, Ding Y, Xiao M, et al. Anti-tumor compound RY10-4 suppresses multidrug resistance in MCF-7/ADR cells by inhibiting PI3K/Akt/NF-κB signaling. Chem Biol Interact. 2017;278:22–31.
  • Wagner D, Spahn-Langguth H, Hanafy A, et al. Intestinal drug efflux: formulation and food effects. Adv Drug Deliv Rev. 2001;50:S13–S31.
  • Hanke U, May K, Rozehnal V, et al. Commonly used nonionic surfactants interact differently with the human efflux transporters ABCB1 (p-glycoprotein) and ABCC2 (MRP2). Eur J Pharm Biopharm. 2010;76:260–268.
  • Yang L, Xin J, Zhang Z, et al. TPGS-modified liposomes for the delivery of ginsenoside compound K against non-small cell lung cancer: formulation design and its evaluation in vitro and in vivo. J Pharm Pharmacol. 2016;68:1109–1118.
  • Lian H, He Z, Meng Z. Rational design of hybrid nanomicelles integrating mucosal penetration and P-glycoprotein inhibition for efficient oral delivery of paclitaxel. Colloids Surf B Biointerfaces. 2017;155:429–439.
  • Dahan A, Miller JM, Amidon GL. Prediction of solubility and permeability class membership: provisional BCS classification of the world's top oral drugs. AAPS J. 2009;11:740–746.
  • Dahan A, Miller JM, Hilfinger JM, et al. High-permeability criterion for BCS classification: segmental/pH dependent permeability considerations. Mol Pharm. 2010;7:1827–1834.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.