320
Views
38
CrossRef citations to date
0
Altmetric
Research Article

Novel small self-assembled resveratrol-bearing cubosomes and hexosomes: preparation, charachterization, and ex vivo permeation

&
Pages 2013-2025 | Received 14 Jan 2018, Accepted 30 Jul 2018, Published online: 30 Oct 2018

References

  • Lu M, Li T, Wan J, et al. Antifungal effects of phytocompounds on Candida species alone and in combination with fluconazole. Int J Antimicrob Agents. 2017;49:125–136.
  • Uzura S, Sekine-Suzuki E, Nakanishi I, et al. A facile and rapid access to resveratrol derivatives and their radioprotective activity. Bioorg Med Chem Lett. 2016;26:3886–3891.
  • Houillé B, Papon N, Boudesocque L, et al. Antifungal activity of resveratrol derivatives against Candida species. J Nat Prod. 2014;77:1658–1662.
  • DOCHERTY J, FU M, HAH J, et al. Effect of resveratrol on herpes simplex virus vaginal infection in the mouse. Antiviral Res. 2005;67:155–162.
  • Lu X, Xu H, Sun B, et al. Enhanced neuroprotective effects of resveratrol delivered by nanoparticles on hydrogen peroxide-induced oxidative stress in rat cortical cell culture. Mol Pharmaceutics. 2013;10:2045–2053.
  • Vang O, Ahmad N, Baile CA, et al. What is new for an old molecule? Systematic review and recommendations on the use of resveratrol. PLoS One. 2011;6:e19881
  • Li B, Wegiel LA, Taylor LS, et al. Stability and solution concentration enhancement of resveratrol by solid dispersion in cellulose derivative matrices. Cellulose. 2013;20:1249–1260.
  • Li J, Miao X, Chen T, et al. Preparation and characterization of pelletized solid dispersion of resveratrol with mesoporous silica microparticles to improve dissolution by fluid-bed coating techniques. Asian J Pharm Sci. 2016;11:528–535.
  • Bondì ML, Fontana G, Carlisi B, et al. Preparation and characterization of solid lipid nanoparticles containing cloricromene. Drug Deliv. 2003;10:245–250.
  • Kwon TK, Hong SK, Kim J-C. In vitro skin permeation of cubosomes containing triclosan. J Ind Eng Chem. 2012;18:563–567.
  • El-Leithy ES, Ibrahim HK, Sorour RM. In vitro and in vivo evaluation of indomethacin nanoemulsion as a transdermal delivery system. Drug Deliv. 2015;22:1010–1017.
  • Yaghmur A, Glatter O. Characterization and potential applications of nanostructured aqueous dispersions. Adv Colloid Interface Sci. 2009;147-148:333–342.
  • Patrick TS. Cubosomes: bicontinuous liquid crystalline nanoparticles. New York: Taylor & Francis; 2009.
  • Rizwan SB, Hanley T, Boyd BJ, et al. Liquid crystalline systems of phytantriol and glyceryl monooleate containing a hydrophilic protein: characterisation, swelling and release kinetics. J Pharm Sci. 2009;98:4191–4204.
  • Caffrey M. Kinetics and mechanism of transitions involving the lamellar, cubic, inverted hexagonal, and fluid isotropic phases of hydrated monoacylglycerides monitored by time-resolved X-ray diffraction. Biochemistry 1987;26:6349–6363.
  • Mariani P, Luzzati V, Delacroix H. Cubic phases of lipid-containing systems. Structure analysis and biological implications. J Mol Biol. 1988;204:165–189.
  • Caboi F, Nylander T, Razumas V, et al. Structural effects, mobility, and redox behavior of vitamin K1 hosted in the monoolein/water liquid crystalline phases. Langmuir 1997;13:5476–5483.
  • Landh T, Larsson K. Particles, method of preparing said particles and uses thereof. 1996, Google Patents.
  • Norlen L, Al-Amoudi A. Stratum corneum keratin structure, function, and formation: the cubic rod-packing and membrane templating model. J Invest Dermatol. 2004;123:715–732.
  • Esposito E, Cortesi R, Drechsler M, et al. Cubosome dispersions as delivery systems for percutaneous administration of indomethacin. Pharm Res. 2005;22:2163–2173.
  • PT Spicer WBS, Small WB, Lynch ML, et al. Precursors of cubic liquid crystalline nanoparticles (cubosomes). J Nanopart Res. 2002;4:297.
  • Pan X, Han K, Peng X, et al. Nanostructured cubosomes as advanced drug delivery system. Curr Pharm Des. 2013;19:6290–6297.
  • Boyd BJ, Rizwan SB, Dong Y-D, et al. Self-assembled geometric liquid-crystalline nanoparticles imaged in three dimensions: hexosomes are not necessarily flat hexagonal prisms. Langmuir. 2007;23:12461–12464.
  • Gabr MM, Mortada SM, Sallam MA. Hexagonal liquid crystalline nanodispersions proven superiority for enhanced oral delivery of rosuvastatin: in vitro characterization and in vivo pharmacokinetic study. J Pharm Sci. 2017;106:3103–3112.
  • Fong WK, Hanley T, Boyd BJ. Stimuli responsive liquid crystals provide ‘on-demand’ drug delivery in vitro and in vivo. J Control Release. 2009;135:218–226.
  • Bisset NB, Boyd BJ, Dong YD. Tailoring liquid crystalline lipid nanomaterials for controlled release of macromolecules. Int J Pharm. 2015;495:241–248.
  • Strickley RG. 2007. Currently marketed oral lipid-based dosage forms: drug products and excipients. Boca Raton: CRC Press; p. 1–31.
  • Nakano M, Teshigawara T, Sugita A, et al. Dispersions of liquid crystalline phases of the monoolein/oleic acid/pluronic F127 system. Langmuir. 2002;18:9283–9288.
  • Gontsarik M, Mohammadtaheri M, Yaghmur A, et al. pH-Triggered nanostructural transformations in antimicrobial peptide/oleic acid self-assemblies. Biomater Sci. 2018;6:803–812.
  • Avachat AM, Parpani SS. Formulation and development of bicontinuous nanostructured liquid crystalline particles of efavirenz. Colloids Surf B Biointerfaces. 2015;126:87–97.
  • Dian L, Yang Z, Li F, et al. Cubic phase nanoparticles for sustained release of ibuprofen. Formulation, characterization, and enhanced bioavailability study. Int J Nanomedicine. 2013;8:845–854.
  • Sagalowicz L, Leser ME, Watzke HJ, et al. Monoglyceride self-assembly structures as delivery vehicles. Trends Food Sci Technol. 2006;17:204–214.
  • Rizwan SB, McBurney WT, Young K, et al. Cubosomes containing the adjuvants imiquimod and monophosphoryl lipid A stimulate robust cellular and humoral immune responses. J Control Release. 2013;165:16–21.
  • Sherif S, Bendas ER, Badawy S. The clinical efficacy of cosmeceutical application of liquid crystalline nanostructured dispersions of alpha lipoic acid as anti-wrinkle. Eur J Pharm Biopharm. 2014;86:251–259.
  • Spicer PT, Hayden KL, Lynch ML, et al. Novel process for producing cubic liquid crystalline nanoparticles (cubosomes). Langmuir. 2001;17:5748–5756.
  • Thapa RK, Yoo BK. Evaluation of the effect of tacrolimus-loaded liquid crystalline nanoparticles on psoriasis-like skin inflammation. J Dermatolog Treat. 2014;25:22–25.
  • Jøraholmen MW, Škalko-Basnet N, Acharya G, et al. Resveratrol-loaded liposomes for topical treatment of the vaginal inflammation and infections. Eur J Pharm Sci. 2015;79:112–121.
  • Jin X, et al. Enhanced oral absorption of 20(S)-protopanaxadiol by self-assembled liquid crystalline nanoparticles containing piperine: in vitro and in vivo studies. Int J Nanomedicine. 2013;8:641–652.
  • El Maghraby GM. Transdermal delivery of hydrocortisone from eucalyptus oil microemulsion: effects of cosurfactants. Int J Pharm. 2008;355:285–292.
  • Myer K. Design of controlled-release drug delivery systems. In: Kutz M, editor. Biomedical engineering and design handbook. Vol.2. New York: McGraw Hill Professional, Access Engineering; 2009.
  • Clares B, Calpena AC, Parra A, et al. Nanoemulsions (NEs), liposomes (LPs) and solid lipid nanoparticles (SLNs) for retinyl palmitate: effect on skin permeation. Int J Pharm. 2014;473:591–598.
  • Mehanna MM, Motawaa AM, Samaha MW. Nanovesicular carrier-mediated transdermal delivery of tadalafil: i-formulation and physicsochemical characterization. Drug Development and Industrial Pharmacy. 2015;41:714–721.
  • Morsi NM, Abdelbary GA, Ahmed MA. Silver sulfadiazine based cubosome hydrogels for topical treatment of burns: development and in vitro/in vivo characterization. Eur J Pharm Biopharm. 2014;86:178–189.
  • Badawi MA, El-Khordagui LK. A quality by design approach to optimization of emulsions for electrospinning using factorial and D-optimal designs. Eur J Pharm Sci. 2014;58:44–54.
  • Elgindy NA, Mehanna MM, Mohyeldin SM. Self-assembled nano-architecture liquid crystalline particles as a promising carrier for progesterone transdermal delivery. Int J Pharm. 2016;501:167–179.
  • Shamma RN, Aburahma MH. Follicular delivery of spironolactone via nanostructured lipid carriers for management of alopecia. Int J Nanomedicine. 2014;9:5449–5460.
  • Jain V, Swarnakar NK, Mishra PR, et al. Paclitaxel loaded PEGylated gleceryl monooleate based nanoparticulate carriers in chemotherapy. Biomaterials. 2012;33:7206–7220.
  • Madheswaran T, Baskaran R, Thapa RK, et al. Design and in vitro evaluation of finasteride-loaded liquid crystalline nanoparticles for topical delivery. AAPS PharmSciTech. 2013;14:45–52.
  • Caboi F, Amico GS, Pitzalis P, et al. Addition of hydrophilic and lipophilic compounds of biological relevance to the monoolein/water system. I. Phase behavior. Chem Phys Lipids. 2001;109:47–62.
  • Tilley AJ, Drummond CJ, Boyd BJ. Disposition and association of the steric stabilizer Pluronic(R) F127 in lyotropic liquid crystalline nanostructured particle dispersions. J Colloid Interface Sci. 2013;392:288–296.
  • Driever CD, Mulet X, Waddington LJ, et al. Layer-by-layer polymer coating on discrete particles of cubic lyotropic liquid crystalline dispersions (cubosomes). Langmuir. 2013;29:12891–12900.
  • Manca ML, Sinico C, Maccioni AM, et al. Composition influence on pulmonary delivery of rifampicin liposomes. Pharmaceutics. 2012;4:590–606.
  • Chong JYT, Mulet X, Keddie DJ, et al. Novel steric stabilizers for lyotropic liquid crystalline nanoparticles: PEGylated-phytanyl copolymers. Langmuir. 2015;31:2615–2629.
  • Lai J, Chen J, Lu Y, et al. Glyceryl monooleate/poloxamer 407 cubic nanoparticles as oral drug delivery systems: I. In vitro evaluation and enhanced oral bioavailability of the poorly water-soluble drug simvastatin. AAPS PharmSciTech. 2009;10:960.
  • Chang CM, Bodmeier R. Swelling of and drug release from monoglyceride-based drug delivery systems. J Pharm Sci. 1997;86:747–752.
  • Phan S, Salentinig S, Gilbert E, et al. Disposition and crystallization of saturated fatty acid in mixed micelles of relevance to lipid digestion. J Colloid Interface Sci. 2015;449:160–166.
  • Phan S, Salentinig S, Prestidge CA, et al. Self-assembled structures formed during lipid digestion: characterization and implications for oral lipid-based drug delivery systems. Drug Deliv and Transl Res. 2014;4:275–294.
  • Zhao XY, Zhang J, Zheng LQ, et al. Studies of cubosomes as a sustained drug delivery system. J Dispersion Sci Technol. 2005;25:795–799.
  • Estracanholli ÉA, Praça FSG, Cintra AB, et al. Liquid crystalline systems for transdermal delivery of celecoxib: In vitro drug release and skin permeation studies. AAPS PharmSciTech. 2014;15:1468–1475.
  • Guo C, Wang J, Cao F, et al. Lyotropic liquid crystal systems in drug delivery. Drug Discov Today. 2010;15:1032–1040.
  • Dash S, Murthy PN, Nath L, et al. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm. 2010;67:217–223.
  • Manca ML, Castangia I, Matricardi P, et al. Molecular arrangements and interconnected bilayer formation induced by alcohol or polyalcohol in phospholipid vesicles. Colloids Surf B Biointerfaces. 2014;117:360–367.
  • Salentinig S, Sagalowicz L, Glatter O. Self-assembled structures and pKa value of oleic acid in systems of biological relevance. Langmuir. 2010;26:11670–11679.
  • Godin B, Touitou E. Transdermal skin delivery: predictions for humans from in vivo, ex vivo and animal models. Adv Drug Deliv Rev. 2007;59:1152–1161.
  • Chantasart D, Kevin Li S, He N, et al. Mechanistic studies of branched-chain alkanols as skin permeation enhancers. J Pharm Sci. 2004;93:762–779.
  • Lampe MA, Williams ML, Elias PM. Human epidermal lipids: characterization and modulations during differentiation. J Lipid Res 1983;24:131–140.
  • Ganem-Quintanar A, Quintanar-Guerrero D, Buri P. Monoolein: a review of the pharmaceutical applications. Drug Dev Ind Pharm. 2000;26:809–820.
  • Cappel MJ, Kreuter J. Effect of nonionic surfactants on transdermal drug delivery: II. Poloxamer and poloxamine surfactants. Int J Pharm. 1991;69:155–167.
  • Lopes LB, Ferreira DA, de Paula D, et al. Reverse hexagonal phase nanodispersion of monoolein and oleic acid for topical delivery of peptides: in vitro and in vivo skin penetration of cyclosporin A. Pharm Res. 2006;23:1332–1342.
  • Lopes L, Speretta FFF, Bentley M. Enhancement of skin penetration of vitamin K using monoolein-based liquid crystalline systems. Eur J Pharm Sci. 2007;32:209–215.
  • Manca ML, Matricardi P, Cencetti C, et al. Combination of argan oil and phospholipids for the development of an effective liposome-like formulation able to improve skin hydration and allantoin dermal delivery. Int J Pharm. 2016;505:204–211.
  • Rattanapak T, Young K, Rades T, et al. Comparative study of liposomes, transfersomes, ethosomes and cubosomes for transcutaneous immunisation: characterisation and in vitro skin penetration. 2012;64:1560–1569.
  • Basalious EB, Shawky N, Badr-Eldin SM. SNEDDS containing bioenhancers for improvement of dissolution and oral absorption of lacidipine. I: development and optimization. Int J Pharm. 2010;391:203–211.
  • Sagalowicz L, Michel M, Adrian M, et al. Crystallography of dispersed liquid crystalline phases studied by cryo-transmission electron microscopy. J Microsc. 2006;221:110–121.
  • Morley WG, Tiddy GJT. Phase behaviour of monoglyceride/water systems. Faraday Trans. 1993;89:2823.
  • Qiu H, Caffrey M. The phase diagram of the monoolein/water system: metastability and equilibrium aspects. Biomaterials 2000;21:223–234.
  • Siekmann B, Bunjes H, Koch MHJ, et al. Preparation and structural investigations of colloidal dispersions prepared from cubic monoglyceride-water phases. Int J Pharm. 2002;244:33–43.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.