2,322
Views
96
CrossRef citations to date
0
Altmetric
Review Article

Microneedles for transdermal drug delivery: a systematic review

, , &
Pages 188-201 | Received 22 Sep 2018, Accepted 09 Oct 2018, Published online: 27 Nov 2018

References

  • Kaushik S, Hord AH, Denson DD, et al. Lack of pain associated with microfabricated microneedles. Anesth Analg. 2001;92:502–504.
  • Gupta J, Gill HS, Andrews SN, et al. Kinetics of skin resealing after insertion of microneedles in human subjects. J Control Release. 2011;154:148–155.
  • Haq M, Smith E, John D, et al. Clinical administration of microneedles: skin puncture, pain and sensation. Biomed Microdevices. 2009;11:35–47.
  • Wei-Ze L, Mei-Rong H, Jian-Ping Z, et al. Super-short solid silicon microneedles for transdermal drug delivery applications. Int J Pharm. 2010;389:122–129.
  • Shirkhanzadeh M. Microneedles coated with porous calcium phosphate ceramics: effective vehicles for transdermal delivery of solid trehalose. J Mater Sci Mater Med. 2005;16:37–45.
  • Yoon Y, Lee GS, Yoo K, et al. Fabrication of a microneedle/CNT hierarchical micro/nano surface electrochemical sensor and its in-vitro glucose sensing characterization. Sensors. 2013;13:16672–16681.
  • Martanto W, Davis SP, Holiday NR, et al. Transdermal delivery of insulin using microneedles in vivo. Pharm Res. 2004;21:947–952.
  • Gill HS, Prausnitz MR. Coated microneedles for transdermal delivery. J Control Release. 2007;117:227–237.
  • Gittard SD, Ovsianikov A, Monteiro-Riviere NA, et al. Fabrication of polymer microneedles using a two-photon polymerization and micromolding process. J Diabetes Sci Technol. 2009;3:304–311.
  • Gittard SD, Nguyen A, Obata K, et al. Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator. Biomed Opt Express. 2011;2:3167–3178.
  • Gupta J, Felner EI, Prausnitz MR. Rapid pharmacokinetics of intradermal insulin administered using microneedles in type 1 diabetes subjects. Diabetes Technol Ther. 2011;13:451–456.
  • Kim JD, Kim M, Yang H, et al. Droplet-born air blowing: novel dissolving microneedle fabrication. J Control Release. 2013;170:430–436.
  • Gupta J, Felner EI, Prausnitz MR. Minimally invasive insulin delivery in subjects with type 1 diabetes using hollow microneedles. Diabetes Technol Ther. 2009;11:329–337.
  • Sivamani RK, Stoeber B, Wu GC, et al. Clinical microneedle injection of methyl nicotinate: stratum corneum penetration. Skin Res Technol. 2005;11:152–156.
  • Van Damme P, Oosterhuis-Kafeja F, Van der Wielen M, et al. Safety and efficacy of a novel microneedle device for dose sparing intradermal influenza vaccination in healthy adults. Vaccine. 2009;27:454–459.
  • van der Maaden K, Trietsch SJ, Kraan H, et al. Novel hollow microneedle technology for depth-controlled microinjection-mediated dermal vaccination: a study with polio vaccine in rats. Pharm Res. 2014;31:1846–1854.
  • Shin J-H, Park J-K, Lee D-H, et al. Microneedle vaccination elicits superior protection and antibody response over intranasal vaccination against swine-origin influenza A (H1N1) in mice. PloS One. 2015;10:e0130684.
  • Smart WH, Subramanian K. The use of silicon microfabrication technology in painless blood glucose monitoring. Diabetes Technol Ther. 2000;2:549–559.
  • Patel SR, Berezovsky DE, McCarey BE, et al. Targeted administration into the suprachoroidal space using a microneedle for drug delivery to the posterior segment of the EyeMicroneedle use for targeted drug delivery. Invest Ophthalmol Vis Sci. 2012;53:4433–4441.
  • Wermeling DP, Banks SL, Hudson DA, et al. Microneedles permit transdermal delivery of a skin-impermeant medication to humans. Proc Natl Acad Sci. 2008;105:2058–2063.
  • Hoang MT, Ita KB, Bair DA. Solid microneedles for transdermal delivery of amantadine hydrochloride and pramipexole dihydrochloride. Pharmaceutics. 2015;7:379–396.
  • Gupta J, Park SS, Bondy B, et al. Infusion pressure and pain during microneedle injection into skin of human subjects. Biomaterials. 2011;32:6823–6831.
  • Mansoor I, Liu Y, Häfeli U, et al. Arrays of hollow out-of-plane microneedles made by metal electrodeposition onto solvent cast conductive polymer structures. J Micromech Microeng. 2013;23:085011.
  • Cormier M, Johnson B, Ameri M, et al. Transdermal delivery of desmopressin using a coated microneedle array patch system. J Control Release. 2004;97:503–511.
  • Jiang J, Gill HS, Ghate D, et al. Coated microneedles for drug delivery to the eye. Invest Ophthalmol Vis Sci. 2007;48:4038–4043.
  • Quinn HL, Bonham L, Hughes CM, et al. Design of a dissolving microneedle platform for transdermal delivery of a fixed‐dose combination of cardiovascular drugs. J Pharm Sci. 2015;104:3490–3500.
  • Park J-H, Allen MG, Prausnitz MR. Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery. J Control Release. 2005;104:51–66.
  • Caffarel-Salvador E, Tuan-Mahmood T-M, McElnay JC, et al. Potential of hydrogel-forming and dissolving microneedles for use in paediatric populations. Int J Pharm. 2015;489:158–169.
  • Zhu DD, Wang QL, Liu XB, et al. Rapidly separating microneedles for transdermal drug delivery. Acta Biomater. 2016;41:312–319.
  • Zhu Z, Luo H, Lu W, et al. Rapidly dissolvable microneedle patches for transdermal delivery of exenatide. Pharm Res. 2014;31:3348–3360.
  • Wilke N, Mulcahy A, Ye S-R, et al. Process optimization and characterization of silicon microneedles fabricated by wet etch technology. Microelectron J. 2005;36:650–656.
  • Mikszta JA, Alarcon JB, Brittingham JM, et al. Improved genetic immunization via micromechanical disruption of skin-barrier function and targeted epidermal delivery. Nat Med. 2002;8:415–419.
  • O’Mahony C. Structural characterization and in-vivo reliability evaluation of silicon microneedles. Biomed Microdevices. 2014;16:333–343.
  • McGrath MG, Vrdoljak A, O’Mahony C, et al. Determination of parameters for successful spray coating of silicon microneedle arrays. Int J Pharm. 2011;415:140–149.
  • Banga AK. Microporation applications for enhancing drug delivery. Expert Opin Drug Deliv. 2009;6:343–354.
  • Bal SM, Caussin J, Pavel S, et al. In vivo assessment of safety of microneedle arrays in human skin. Eur J Pharm Sci. 2008;35:193–202.
  • Gill HS, Denson DD, Burris BA, et al. Effect of microneedle design on pain in human subjects. Clin J Pain. 2008;24:585.
  • McCarthy PT, Otto KJ, Rao MP. Robust penetrating microelectrodes for neural interfaces realized by titanium micromachining. Biomed Microdevices. 2011;13:503–515.
  • Chandrasekaran S, Frazier AB. In mechanical characterization of surface micromachined microneedle array. In: Dittmar A, Beebe D. Proceedings of the 2nd Annual International IEEE-EMB Special Topic Conference on Microtechnologies in Medicine & Biology. New York, NY: IEEE; 2002 May 2–4, Madison, Wisconsin, USA. P. 94–98.
  • Norman JJ, Choi S-O, Tong NT, et al. Hollow microneedles for intradermal injection fabricated by sacrificial micromolding and selective electrodeposition. Biomed Microdevices. 2013;15:203–210.
  • Invernale MA, Tang BC, York RL, et al. Microneedle electrodes toward an amperometric glucose‐sensing smart patch. Adv Healthcare Mater. 2014;3:338–342.
  • Bhattacharya S, Kam DH, Song L, et al. Characterization of individual microneedles formed on alloy surfaces by femtosecond laser ablation. Metall Mat Trans A. 2012;43:2574–2580.
  • Gittard SD, Narayan RJ. Chapter 20, Applications of microneedle technology to transdermal drug delivery. Monteiro-Riviere NA, editor. Toxicology of the skin, 2010.
  • Amalraju D, Dawood AS. Mechanical strength evaluation analysis of stainless steel and titanium locking plate for femur bone fracture. ESTIJ. 2012;2:2250–3498.
  • Assad M, Lemieux N, Rivard C, et al. Comparative in vitro biocompatibility of nickel‐titanium, pure nickel, pure titanium, and stainless steel: genotoxicity and atomic absorption evaluation. Biomed Mater Eng. 1999;9:1–12.
  • Martanto W, Moore JS, Kashlan O, et al. Microinfusion using hollow microneedles. Pharm Res. 2006;23:104–113.
  • Wang PM, Cornwell M, Hill J, et al. Precise microinjection into skin using hollow microneedles. J Invest . 2006;126:1080–1087.
  • Finley J, Knabb J. Cutaneous silica granuloma. Plast Reconstr Surg. 1982;69:340–343.
  • Bystrova S, Luttge R. Micromolding for ceramic microneedle arrays. Microelectron Eng. 2011;88:1681–1684.
  • Theiss F, Apelt D, Brand B, et al. Biocompatibility and resorption of a brushite calcium phosphate cement. Biomaterials. 2005;26:4383–4394.
  • Gittard S, Narayan R, Jin C, et al. Pulsed laser deposition of antimicrobial silver coating on Ormocer® microneedles. Biofabrication. 2009;1:041001.
  • Doraiswamy A, Ovsianikov A, Gittard SD, et al. Fabrication of microneedles using two photon polymerization for transdermal delivery of nanomaterials. J Nanosci Nanotechnol. 2010;10:6305–6312.
  • Christel P. Biocompatibility of surgical-grade dense polycrystalline alumina. Clin Orthop Relat Res. 1992;282:10–18.
  • Cai B, Xia W, Bredenberg S, et al. Self-setting bioceramic microscopic protrusions for transdermal drug delivery. J Mater Chem B. 2014;2:5992–5998.
  • Ovsianikov A, Chichkov B, Mente P, et al. Two photon polymerization of polymer–ceramic hybrid materials for transdermal drug delivery. Int J Applied Ceramic Technol. 2007;4:22–29.
  • Kim JY, Han MR, Kim YH, et al. Tip-loaded dissolving microneedles for transdermal delivery of donepezil hydrochloride for treatment of Alzheimer’s disease. Eur J Pharm Biopharm. 2016;105:148–155.
  • Katsumi H, Liu S, Tanaka Y, et al. Development of a novel self‐dissolving microneedle array of alendronate, a nitrogen‐containing bisphosphonate: evaluation of transdermal absorption, safety, and pharmacological effects after application in rats. J Pharm Sci. 2012;101:3230–3238.
  • Luangveera W, Jiruedee S, Mama W, et al. Fabrication and characterization of novel microneedles made of a polystyrene solution. J Mech Behav Biomed Mater. 2015;50:77–81.
  • Grayson AC, Voskerician G, Lynn A, et al. Differential degradation rates in vivo and in vitro of biocompatible poly (lactic acid) and poly (glycolic acid) homo-and co-polymers for a polymeric drug-delivery microchip. J Biomater Sci Polym Ed. 2004;15:1281–1304.
  • Luzardo-Álvarez A, Blanco-Méndez J, Varela-Patiño P, et al. Amoxicillin-loaded sponges made of collagen and poly [(methyl vinyl ether)-co-(maleic anhydride)] for root canal treatment: preparation, characterization and in vitro cell compatibility. J Biomater Sci Polym Ed. 2011;22:329–342.
  • Dhar N, Akhlaghi SP, Tam KC. Biodegradable and biocompatible polyampholyte microgels derived from chitosan, carboxymethyl cellulose and modified methyl cellulose. Carbohydr Polym. 2012;87:101–109.
  • Donnelly RF, Singh TRR, Alkilani AZ, et al. Hydrogel-forming microneedle arrays exhibit antimicrobial properties: potential for enhanced patient safety. Int J Pharm. 2013;451:76–91.
  • McGrath MG, Vucen S, Vrdoljak A, et al. Production of dissolvable microneedles using an atomised spray process: effect of microneedle composition on skin penetration. Eur J Pharm Biopharm. 2014;86:200–211.
  • Donnelly RF, Singh TRR, Tunney MM, et al. Microneedle arrays allow lower microbial penetration than hypodermic needles in vitro. Pharm Res. 2009;26:2513–2522.
  • Omatsu T, Chujo K, Miyamoto K, et al. Metal microneedle fabrication using twisted light with spin. Opt Express. 2010;18:17967–17973.
  • Dardano P, Caliò A, Di Palma V, et al. A photolithographic approach to polymeric microneedles array fabrication. Materials. 2015;8:8661–8673.
  • Moon SJ, Lee SS, Lee H, et al. Fabrication of microneedle array using LIGA and hot embossing process. Microsyst Technol. 2005;11:311–318.
  • Henry SE. Microfabricated device for transdermal drug delivery [Thesis]. Academic Faculty of Georgia Institute of Technology; 1997; p. 14–16.
  • Henry S, McAllister DV, Allen MG, et al. Microfabricated microneedles: a novel approach to transdermal drug delivery. J Pharm Sci. 1998;87:922–925.
  • Campbell PK, Jones KE, Huber RJ, et al. A silicon-based, three-dimensional neural interface: manufacturing processes for an intracortical electrode array. IEEE Trans Biomed Eng. 1991;38:758–768.
  • Lee K, Lee HC, Lee DS, et al. Drawing lithography: three‐dimensional fabrication of an ultrahigh‐aspect‐ratio microneedle. Adv Mater. 2010;22:483–486.
  • Lee JW, Choi SO, Felner EI, et al. Dissolving microneedle patch for transdermal delivery of human growth hormone. Small. 2011;7:531–539.
  • Melchels FP, Feijen J, Grijpma DW. A review on stereolithography and its applications in biomedical engineering. Biomaterials. 2010;31:6121–6130.
  • Nguyen J, Ita KB, Morra MJ, et al. The influence of solid microneedles on the transdermal delivery of selected antiepileptic drugs. Pharmaceutics. 2016;8 doi:10.3390/pharmaceutics8040033.
  • Shin JU, Kim JD, Kim HK, et al. The use of biodegradable microneedle patches to increase penetration of topical steroid for prurigo nodularis. Eur J Dermatol. 2018;28:71–77.
  • Roxhed N, Samel B, Nordquist L, et al. Painless drug delivery through microneedle-based transdermal patches featuring active infusion. IEEE Trans Biomed Eng. 2008;55:1063–1071.
  • Tran BQ, Miller PR, Taylor RM, et al. Proteomic characterization of dermal interstitial fluid extracted using a novel microneedle-assisted technique. J Proteome Res. 2018;17:479–485.
  • Pamornpathomkul B, Niyomtham N, Yingyongnarongkul BE, et al. Cationic niosomes for enhanced skin immunization of plasmid DNA-encoding ovalbumin via hollow microneedles. AAPS PharmSciTech. 2018;19:481–488.
  • van der Maaden K, Heuts J, Camps M, et al. Hollow microneedle-mediated micro-injections of a liposomal HPV E743-63 synthetic long peptide vaccine for efficient induction of cytotoxic and T-helper responses. J Control Release. 2018;269:347–354.
  • Kim HG, Gater DL, Kim YC. Development of transdermal vitamin D3 (VD3) delivery system using combinations of PLGA nanoparticles and microneedles. Drug Deliv Transl Res. 2018;8:281–290.
  • Duong HTT, Kim NW, Thambi T, et al. Microneedle arrays coated with charge reversal pH-sensitive copolymers improve antigen presenting cells-homing DNA vaccine delivery and immune responses. J Control Release. 2018;269:225–234.
  • Zhang Y, Wang J, Yu J, et al. Bioresponsive microneedles with a sheath structure for H2 O2 and pH cascade-triggered insulin delivery. Small. 2018;14:e1704181.
  • Wang SX, Wen X, Bell C, et al. Liposomedelivered baicalein induction of myeloid leukemia K562 cell death via reactive oxygen species generation. Mol Med Rep. 2018;17:4524–4530.
  • Sullivan SP, Koutsonanos DG, del Pilar Martin M, et al. Dissolving polymer microneedle patches for influenza vaccination. Nat Med. 2010;16:915–920.
  • Matsuo K, Yokota Y, Zhai Y, et al. A low-invasive and effective transcutaneous immunization system using a novel dissolving microneedle array for soluble and particulate antigens. J Control Release. 2012;161:10–17.
  • Nguyen HX, Banga AK. Enhanced skin delivery of vismodegib by microneedle treatment. Drug Deliv Transl Res. 2015;5:407–423.
  • Chen MC, Lai KY, Ling MH, et al. Enhancing immunogenicity of antigens through sustained intradermal delivery using chitosan microneedles with a patch-dissolvable design. Acta Biomater. 2018;65:66–75.
  • Kim JH, Shin JU, Kim SH, et al. Successful transdermal allergen delivery and allergen-specific immunotherapy using biodegradable microneedle patches. Biomaterials. 2018;150:38–48.
  • Fakhraei Lahiji S, Seo SH, Kim S, et al. Transcutaneous implantation of valproic acid-encapsulated dissolving microneedles induces hair regrowth. Biomaterials. 2018;167:69–79.
  • Jeong HR, Kim JY, Kim SN, et al. Local dermal delivery of Cyclosporin A, a hydrophobic and high molecular weight drug, using dissolving microneedles. Eur J Pharm Biopharm. 2018;127:237–243.
  • Pan J, Ruan W, Qin M, et al. Intradermal delivery of STAT3 siRNA to treat melanoma via dissolving microneedles. Sci Rep. 2018;8:1117.
  • Cole G, Ali AA, McCrudden CM, et al. DNA vaccination for cervical cancer: strategic optimisation of RALA mediated gene delivery from a biodegradable microneedle system. Eur J Pharm Biopharm. 2018;127:288–297.
  • Hutton ARJ, Quinn HL, McCague PJ, et al. Transdermal delivery of vitamin K using dissolving microneedles for the prevention of vitamin K deficiency bleeding. Int J Pharm. 2018;541:56–63.
  • Fakhraei Lahiji S, Jang Y, Huh I, et al. Exendin-4-encapsulated dissolving microneedle arrays for efficient treatment of type 2 diabetes. Sci Rep. 2018;8:1170.
  • Nguyen HX, Banga AK. Delivery of methotrexate and characterization of skin treated by fabricated PLGA microneedles and fractional ablative laser. Pharm Res. 2018;35:68.
  • Ronnander P, Simon L, Spilgies H, et al. Dissolving polyvinylpyrrolidone-based microneedle systems for in-vitro delivery of sumatriptan succinate. Eur J Pharm Sci. 2018;114:84–92.
  • Wang QL, Zhang XP, Chen BZ, et al. Dissolvable layered microneedles with core-shell structures for transdermal drug delivery. Mater Sci Eng C Mater Biol Appl. 2018;83:143–147.
  • Norman JJ, Brown MR, Raviele NA, et al. Faster pharmacokinetics and increased patient acceptance of intradermal insulin delivery using a single hollow microneedle in children and adolescents with type 1 diabetes. Pediatr Diabetes. 2013;14:459–465.
  • Spierings EL, Brandes JL, Kudrow DB, et al. Randomized, double-blind, placebo-controlled, parallel-group, multi-center study of the safety and efficacy of ADAM zolmitriptan for the acute treatment of migraine. Cephalalgia. 2018;38:215–224.
  • U.S. National Library of Medicine. Suprachoroidal injection of CLS-TA in subjects non-infectious uveitis (AZALEA); U.S. National Library of Medicine. 2018 [cited 2018 Jul 28]. Available from: https://clinicaltrials.gov/ct2/show/NCT03097315?term¼microneedles&recrs¼e&phase¼2&rank¼4
  • U.S. National Library of Medicine. Suprachoroidal injection of CLS-TA in subjects with macular edema associated with non-infectious uveitis (PEACHTREE); 2018 [cited 2018 Jul 28]. Available from: https://clinicaltrials.gov/ct2/show/NCT02595398?term¼microneedles&recrs¼e&phase¼2&rank¼5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.