1,022
Views
53
CrossRef citations to date
0
Altmetric
Review Article

Enhancing oral bioavailability of poorly soluble drugs with mesoporous silica based systems: opportunities and challenges

ORCID Icon & ORCID Icon
Pages 349-358 | Received 14 Aug 2018, Accepted 19 Oct 2018, Published online: 20 Nov 2018

References

  • Van Speybroeck M, Barillaro V, Thi TD, et al. Ordered mesoporous silica material SBA-15: a broad-spectrum formulation platform for poorly soluble drugs. J Pharm Sci. 2009;98:2648–2658.
  • Mellaerts R, Houthoofd K, Elen K, et al. Aging behavior of pharmaceutical formulations of itraconazole on SBA-15 ordered mesoporous silica carrier material. Microporous Mesoporous Mater. 2010;130:154–161.
  • Juère E, Kleitz F. On the nanopore confinement of therapeutic drugs into mesoporous silica materials and its implications. Microporous Mesoporous Mater. 2018;270:109–119.
  • Mellaerts R, Aerts CA, Humbeeck JV, et al. Enhanced release of itraconazole from ordered mesoporous SBA-15 silica materials. Chem Commun. 2007;(13):1375–1377.
  • Brouwers J, Brewster ME, Augustijns P. Supersaturating drug delivery systems: the answer to solubility-limited oral bioavailability? J Pharm Sci. 2009;98:2549–2572.
  • Maleki A, Kettiger H, Schoubben A, et al. Mesoporous silica materials: from physico-chemical properties to enhanced dissolution of poorly water-soluble drugs. J Controlled Release. 2017;262:329–347.
  • Diab R, Canilho N, Pavel IA, et al. Silica-based systems for oral delivery of drugs, macromolecules and cells. Adv Colloid Interface Sci. 2017;249:346–362.
  • Simovic S, Ghouchi-Eskandar N, Moom Sinn A, et al. Silica materials in drug delivery applications. Curr Drug Discov Tech. 2011;8:250–268.
  • Kresge CT, Roth WJ. The discovery of mesoporous molecular sieves from the twenty year perspective. Chem Soc Rev. 2013;42:3663–3670.
  • Hong S, Shen S, Tan DCT, et al. High drug load, stable, manufacturable and bioavailable fenofibrate formulations in mesoporous silica: a comparison of spray drying versus solvent impregnation methods. Drug Delivery. 2016;23:316–327.
  • Letchmanan K, Shen SC, Ng WK, et al. Dissolution and physicochemical stability enhancement of artemisinin and mefloquine co-formulation via nano-confinement with mesoporous SBA-15. Colloids Surf B. 2017;155:560–568.
  • Bouledjouidja A, Masmoudi Y, Van Speybroeck M, et al. Impregnation of fenofibrate on mesoporous silica using supercritical carbon dioxide. Int J Pharmaceutics. 2016;499:1–9.
  • Sayed E, Karavasili C, Ruparelia K, et al. Electrosprayed mesoporous particles for improved aqueous solubility of a poorly water soluble anticancer agent: in vitro and ex vivo evaluation. J Control Release. 2018;278:142–155.
  • Andersson J, Rosenholm J, Areva S, et al. Influences of material characteristics on ibuprofen drug loading and release profiles from ordered micro- and mesoporous silica matrices. Chem Mater. 2004;16:4160–4167.
  • Van Speybroeck M, Mellaerts R, Mols R, et al. Enhanced absorption of the poorly soluble drug fenofibrate by tuning its release rate from ordered mesoporous silica. Eur J Pharm Sci. 2010;41:623–630.
  • Limnell T, Heikkilä T, Santos HA, et al. Physicochemical stability of high indomethacin payload ordered mesoporous silica MCM-41 and SBA-15 microparticles. Int J Pharm. 2011;416:242–251.
  • Qu F, Zhu G, Huang S, et al. Controlled release of Captopril by regulating the pore size and morphology of ordered mesoporous silica. Microporous Mesoporous Mater. 2006;92:1–9.
  • Cauda V, Mühlstein L, Onida B, et al. Tuning drug uptake and release rates through different morphologies and pore diameters of confined mesoporous silica. Microporous Mesoporous Mater. 2009;118:435–442.
  • Shen S-C, Ng WK, Chia L, et al. Physical state and dissolution of ibuprofen formulated by co-spray drying with mesoporous silica: effect of pore and particle size. Int J Pharmaceutics. 2011;410:188–195.
  • Reich SJ, Svidrytski A, Hoeltzel A, et al. Hindered diffusion in ordered mesoporous silicas: insights from pore-scale simulations in physical reconstructions of sba-15 and kit-6 silica. J Phys Chem C. 2018;122(23):12350–12361.
  • Chen Z, Li X, He H, et al. Mesoporous silica nanoparticles with manipulated microstructures for drug delivery. Colloids Surf, B. 2012;95:274–278.
  • Wang Y, Sun L, Jiang T, et al. The investigation of MCM-48-type and MCM-41-type mesoporous silica as oral solid dispersion carriers for water insoluble cilostazol. Drug Dev Ind Pharm. 2014;40:819–828.
  • Izquierdo-Barba I, Sousa E, Doadrio JC, et al. Influence of mesoporous structure type on the controlled delivery of drugs: release of ibuprofen from MCM-48, SBA-15 and functionalized SBA-15. J Sol-Gel Sci Technol. 2009;50:421–429.
  • McCarthy CA, Ahern RJ, Devine KJ, et al. Role of drug adsorption onto the silica surface in drug release from mesoporous silica systems. Mol Pharmaceutics. 2018;15:141–149.
  • Martín A, Morales V, Ortiz-Bustos J, et al. Modelling the adsorption and controlled release of drugs from the pure and amino surface-functionalized mesoporous silica hosts. Microporous Mesoporous Mater. 2018;262:23–34.
  • Nairi V, Medda L, Monduzzi M, et al. Adsorption and release of ampicillin antibiotic from ordered mesoporous silica. J Colloid Interface Sci. 2017;497:217–225.
  • Muñoz B, Rámila A, Pérez-Pariente J, et al. MCM-41 Organic Modification as Drug Delivery Rate Regulator. Chem Mater. 2003;15:500–503.
  • van Speybroeck M, Mellaerts R, Thi TD, et al. Preventing release in the acidic environment of the stomach via occlusion in ordered mesoporous silica enhances the absorption of poorly soluble weakly acidic drugs. J Pharm Sci. 2011;100:4864–4876.
  • Lainé AL, Price D, Davis J, et al. Enhanced oral delivery of celecoxib via the development of a supersaturable amorphous formulation utilising mesoporous silica and co-loaded HPMCAS. Int J Pharmaceutics. 2016;512:118–125.
  • Bunker BC. Molecular mechanisms for corrosion of silica and silicate glasses. J Non-Cryst Solids. 1994;179:300–308.
  • Croissant JG, Fatieiev Y, Khashab NM. Degradability and clearance of silicon, organosilica, silsesquioxane, silica mixed oxide, and mesoporous silica nanoparticles. Adv Mater. 2017;29:1604634.
  • Bass JD, Grosso D, Boissiere C, et al. Stability of mesoporous oxide and mixed metal oxide materials under biologically relevant conditions. Chem Mater. 2007;19:4349–4356.
  • Finnie KS, Waller DJ, Perret FL, et al. Biodegradability of sol–gel silica microparticles for drug delivery. J Sol-Gel Sci Technol. 2009;49:12–18.
  • Giovaninni G, Moore CJ, Hall AJ, et al. pH-Dependent silica nanoparticle dissolution and cargo release. Colloids Surf, B. 2018;169:242–248.
  • Li L, Liu T, Fu C, et al. Biodistribution, excretion, and toxicity of mesoporous silica nanoparticles after oral administration depend on their shape. Nanomed Nanotechnol Biol Med. 2015;11:1915–1924.
  • Braun K, Pochert A, Beck M, et al. Dissolution kinetics of mesoporous silica nanoparticles in different simulated body fluids. J Sol-Gel Sci Technol. 2016;79:319–327.
  • He Q, Shi J, Zhu M, et al. The three-stage in vitro degradation behavior of mesoporous silica in simulated body fluid. Microporous Mesoporous Mater. 2010;131:314–320.
  • Yamada H, Urata C, Aoyama Y, et al. Preparation of colloidal mesoporous silica nanoparticles with different diameters and their unique degradation behavior in static aqueous systems. Chem Mater. 2012;24:1462–1471.
  • Zheng N, Li J, Xu C, et al. Mesoporous silica nanorods for improved oral drug absorption. Artif Cells Nanomed Biotechnol. 2018;46:1–9.
  • Yu M, Wang J, Yang Y, et al. Rotation-facilitated rapid transport of nanorods in mucosal tissues. Nano Lett. 2016;16:7176–7182.
  • Bukara K, Schueller L, Rosier J, et al. In vivo performance of fenofibrate formulated with ordered mesoporous silica versus 2-marketed formulations: a comparative bioavailability study in Beagle Dogs. J Pharm Sci. 2016;105:2381–2385.
  • Guzman HR, Tawa M, Zhang Z, et al. Combined use of crystalline salt forms and precipitation inhibitors to improve oral absorption of celecoxib from solid oral formulations. J Pharm Sci. 2007;96:2686–2702.
  • Van Speybroeck M, Mols R, Mellaerts R, et al. Combined use of ordered mesoporous silica and precipitation inhibitors for improved oral absorption of the poorly soluble weak base itraconazole. Eur J Pharm Biopharm. 2010;75:354–365.
  • Dressman JB, Herbert E, Wieber A, et al. Mesoporous silica-based dosage forms improve release characteristics of poorly soluble drugs: case example fenofibrate. J Pharm Pharmacol. 2016;68:634–645.
  • Warren DB, Benameur H, Porter CJH, et al. Using polymeric precipitation inhibitors to improve the absorption of poorly water-soluble drugs: a mechanistic basis for utility. J Drug Target. 2010;18:704–731.
  • Edueng K, Mahlin D, Larsson P, et al. Mechanism-based selection of stabilization strategy for amorphous formulations: Insights into crystallization pathways. J Control Release. 2017;256:193–202.
  • O'Shea JP, Nagarsekar K, Wieber A, et al. Mesoporous silica-based dosage forms improve bioavailability of poorly soluble drugs in pigs: case example fenofibrate. J Pharm Pharmacol. 2017;69:1284–1292.
  • Rao S, Richter K, Nguyen T-H, et al. Pluronic-functionalized silica − lipid hybrid microparticles: improving the oral delivery of poorly water-soluble weak bases. Mol Pharm. 2015;12:4424–4433.
  • Popat A, Jambhrunkar S, Zhang J, et al. Programmable drug release using bioresponsive mesoporous silica nanoparticles for site-specific oral drug delivery. Chem Commun. 2014;50:5547–5550.
  • González-Alvarez M, Coll C, Gonzalez-Alvarez I, et al. Gated mesoporous silica nanocarriers for a "two-step" targeted system to colonic tissue. Mol Pharmaceutics. 2017;14:4442–4453.
  • Wang Y, Zhao Y, Cui Y, et al. Overcoming multiple gastrointestinal barriers by bilayer modified hollow mesoporous silica nanocarriers. Acta Biomater. 2018;65:405–416.
  • Shono Y, Jantratid E, Dressman JB. Precipitation in the small intestine may play a more important role in the in vivo performance of poorly soluble weak bases in the fasted state: case example nelfinavir. Eur J Pharm Biopharm. 2011;79:349–356.
  • Kleberg K, Jacobsen J, Müllertz A. Characterising the behaviour of poorly water soluble drugs in the intestine: application of biorelevant media for solubility, dissolution and transport studies. J Pharm Pharmacol. 2010;62:1656–1668.
  • Kostewicz ES, Wunderlich M, Brauns U, et al. Predicting the precipitation of poorly soluble weak bases upon entry in the small intestine. J Pharm Pharmacol. 2004;56:43–51.
  • Berlin M, Przyklenk K-H, Richtberg A, et al. Prediction of oral absorption of cinnarizine – a highly supersaturating poorly soluble weak base with borderline permeability. Eur J Pharm Biopharm. 2014;88:795–806.
  • McCarthy CA, Faisal W, O'Shea JP, et al. In vitro dissolution models for the prediction of in vivo performance of an oral mesoporous silica formulation. J Control Release. 2017;250:86–95.
  • Yasmin R, Rao S, Bremmell KE, et al. Porous silica-supported solid lipid particles for enhanced solubilization of poorly soluble drugs. AAPS J. 2016;18:876–885.
  • Yasmin R, Rao S, Bremmell K, et al. Synergistic role of solid lipid and porous silica in improving the oral delivery of weakly basic poorly water soluble drugs. Eur J Pharm Sci. 2017;96:508–514.
  • Rao S, Tan A, Boyd BJ, et al. Synergistic role of self-emulsifying lipids and nanostructured porous silica particles in optimizing the oral delivery of lovastatin. Nanomedicine. 2014;9:2745–2759.
  • Bala V, Rao S, Prestidge CA. Facilitating gastrointestinal solubilisation and enhanced oral absorption of SN38 using a molecularly complexed silica-lipid hybrid delivery system. Eur J Pharm Biopharm. 2016;105:32–39.
  • Quan G, Wu Q, Zhang X, et al. Enhancing in vitro dissolution and in vivo bioavailability of fenofibrate by solid self-emulsifying matrix combined with SBA-15 mesoporous silica. Colloids Surf, B. 2016;141:476–482.
  • Bremmell KE, Tan A, Martin A, et al. Tableting lipid-based formulations for oral drug delivery: A case study with silica nano-particle-lipid-mannitol hybrid microparticles. J Pharm Sci. 2013;102:684–693.
  • Joyce P, Barnes TJ, Boyd BJ, et al. Porous nanostructure controls kinetics, disposition and self-assembly structure of lipid digestion products. RSC Adv. 2016;6:78385–78395.
  • Van Speybroeck M, Williams HD, Nguyen TH, et al. Incomplete desorption of liquid excipients reduces the in vitro and in vivo performance of self-emulsifying drug delivery systems solidified by adsorption onto an inorganic mesoporous carrier. Mol Pharm. 2012;9:2750–2760.
  • Agarwal V, Siddiqui A, Ali H, et al. Dissolution and powder flow characterization of solid self-emulsified drug delivery system (SEDDS). Int J Pharm. 2009;366:44–52.
  • Kim S, Diab R, Joubert O, et al. Core-shell microcapsules of solid lipid nanoparticles and mesoporous silica for enhanced oral delivery of curcumin. Colloids Surf B. 2016;140:161–168.
  • Bukara K, Schueller L, Rosier J, et al. Ordered mesoporous silica to enhance the bioavailability of poorly water-soluble drugs: proof of concept in man. Eur J Pharm Biopharm. 2016;108:220–225.
  • Sjögren E, Abrahamsson B, Augustijns P, et al. In vivo methods for drug absorption – Comparative physiologies, model selection, correlations with in vitro methods (IVIVC), and applications for formulation/API/excipient characterization including food effects. Eur J Pharm Sci. 2014;57:99–151.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.