223
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Dual cross-linked chitosan microspheres formulated with spray-drying technique for the sustained release of levofloxacin

, , , , , , & ORCID Icon show all
Pages 568-576 | Received 29 Jan 2018, Accepted 07 Jan 2019, Published online: 31 Jan 2019

References

  • Devi ML, Chandrasekhar KB. A validated stability-indicating RP-HPLC method for levofloxacin in the presence of degradation products, its process related impurities and identification of oxidative degradant. J Pharm Biomed Anal. 2009;50:710–717.
  • Miller D, Alfonso EC. Comparative in vitro activity of levofloxacin, ofloxacin, and ciprofloxacin against ocular streptococcal isolates. Cornea. 2004;23:289–293.
  • Cantor LB, WuDunn D, Yung CW. Ocular penetration of levofloxacin, ofloxacin and ciprofloxacin in eyes with functioning filtering blebs: investigator masked, randomised clinical trial. Br J Ophthalmol. 2008;92:345–347.
  • Baeyens V, Gurny R. Chemical and physical parameters of tears relevant for the design of ocular drug delivery formulations. Pharm Acta Helv. 1997;72:191–202.
  • Frangie JP. Clinical pharmacokinetics of various topical ophthalmic delivery systems. Clin Pharmacokinet. 1995;29:130–138.
  • Bourlais CL, Acar L, Zia H, et al. Ophthalmic drug delivery systems-recent advances. Prog Retin Eye Res. 1998;17:33–58.
  • Alvarez-Trabado J, Diebold Y, Sanchez A. Designing lipid nanoparticles for topical ocular drug delivery. Int J Pharm. 2017;532:204–217.
  • Hughes GA. Nanostructure-mediated drug delivery. Dis Mon. 2005;51:342–361.
  • Paolicelli P, de la Fuente M, Sanchez A, et al. Chitosan nanoparticles for drug delivery to the eye. Expert Opin Drug Deliv. 2009;6:239–253.
  • de la Fuente M, Ravina M, Paolicelli P, et al. Chitosan-based nanostructures: a delivery platform for ocular therapeutics. Adv Drug Deliv Rev. 2010;62:100–117.
  • Gupta H, Aqil M, Khar RK, et al. Sparfloxacin-loaded PLGA nanoparticles for sustained ocular drug delivery. Nanomedicine. 2010;6:324–333.[pubmedMismatch]
  • Nagarwal RC, Kant S, Singh PN, et al. Polymeric nanoparticulate system: a potential approach for ocular drug delivery. J Control Release. 2009;136:2–13.[pubmedMismatch]
  • Vega E, Gamisans F, Garcia ML, et al. PLGA nanospheres for the ocular delivery of flurbiprofen: drug release and interactions. J Pharm Sci. 2008;97:5306–5317.
  • Nagarwal RC, Singh PN, Kant S, et al. Chitosan nanoparticles of 5-fluorouracil for ophthalmic delivery: characterization, in-vitro and in-vivo study. Chem Pharm Bull. 2011;59:272–278.
  • Nagarwal RC, Singh PN, Kant S, et al. Chitosan coated PLA nanoparticles for ophthalmic delivery: characterization, in-vitro and in-vivo study in rabbit eye. J Biomed Nanotechnol. 2010;6:648–657.
  • Singh KH, Shinde UA. Chitosan nanoparticles for controlled delivery of brimonidine tartrate to the ocular membrane. Pharmazie. 2011;66:594–599.
  • Jain GK, Pathan SA, Akhter S, et al. Microscopic and spectroscopic evaluation of novel PLGA-chitosan Nanoplexes as an ocular delivery system. Colloids Surf B Biointerfaces. 2011;82:397–403.[pubmedMismatch]
  • Wadhwa S, Paliwal R, Paliwal SR, et al. Chitosan and its role in ocular therapeutics. Mini Rev Med Chem. 2009;9:1639–1647.
  • Sinha VR, Singla AK, Wadhawan S, et al. Chitosan microspheres as a potential carrier for drugs. Int J Pharm. 2004;274:1–33.
  • He P, Davis SS, Illum L. In vitro evaluation of the mucoadhesive properties of chitosan microspheres. Int J Pharm. 1998;166:75–88.
  • Shimoda J, Onishi H, Machida Y. Bioadhesive characteristics of chitosan microspheres to the mucosa of rat small intestine. Drug Dev Ind Pharm. 2001;27:567–576.
  • Zhang J, Xia W, Liu P, et al. Chitosan modification and pharmaceutical/biomedical applications. Marine Drugs. 2010;8:1962–1987.
  • Di Colo G, Zambito Y, Burgalassi S, et al. Effect of chitosan on in vitro release and ocular delivery of ofloxacin from erodible inserts based on poly(ethylene oxide). Int J Pharm. 2002;248:115–122.
  • Patil S, Babbar A, Mathur R, et al. Mucoadhesive chitosan microspheres of carvedilol for nasal administration. J Drug Target. 2010;18:321–331.
  • Quinones JP, Garcia YC, Curiel H, et al. Microspheres of chitosan for controlled delivery of brassinosteroids with biological activity as agrochemicals. Carbohydr Polym. 2010;80:915–921.
  • Nagda C, Chotai N, Patel S, et al. Chitosan microspheres of aceclofenac: in vitro and in vivo evaluation. Pharm Dev Technol. 2010;15:442–451.
  • Kaloti M, Bohidar HB. Kinetics of coacervation transition versus nanoparticle formation in chitosan-sodium tripolyphosphate solutions. Colloids Surf B Biointerfaces. 2010;81:165–173
  • Huang HY, Shieh YT, Shih CM, et al. Magnetic chitosan/iron (II, III) oxide nanoparticles prepared by spray-drying. Carbohydr Polym. 2010;81:906–910.
  • Jayasundera M, Adhikari B, Adhikari R, et al. The effect of protein types and low molecular weight surfactants on spray drying of sugar-rich foods. Food Hydrocolloids. 2011;25:459–469.
  • Saluja V, Amorij JP, Kapteyn JC, et al. A comparison between spray drying and spray freeze drying to produce an influenza subunit vaccine powder for inhalation. J Control Release. 2010;144:127–133.
  • Lauruengtana V, Furuta T, Kanai M, et al. Spray drying of S-adenosyl-L-methionine in Saccharomyces cerevisiae K-9. Drying Technol. 2010;28:1055–1062.
  • Gavim E, Rassu G, Muzzarelli C, et al. Spray-dried microspheres based on methylpyrrolidinone chitosan as new carrier for nasal administration of metoclopramide. Eur J Pharm Biopharm. 2008;68:245–252.
  • Hafner A, Filipovic-Grcic J, Voinovich D, et al. Development and in vitro characterization of chitosan-based microspheres for nasal delivery of promethazine. Drug Dev Ind Pharm. 2007;33:427–436.
  • Zhang WF, Chen XG, Li PW, et al. Preparation and characterization of carboxymethyl chitosan and beta-cyclodextrin microspheres by spray drying. Drying Technol. 2007;26:108–115.
  • Grenha A, Remunan-Lopez C, Carvalho ELS, et al. Microspheres containing lipid/chitosan nanoparticles complexes for pulmonary delivery of therapeutic proteins. Eur J Pharm Biopharm. 2008;69:83–93.
  • Maged A, Mahmoud AA, Ghorab MM. Nano spray drying technique as a novel approach to formulate stable econazole nitrate nanosuspension formulations for ocular use. Mol Pharmaceutics. 2016;13:2951–2965.
  • Gavini E, Chetoni P, Cossu M, et al. PLGA microspheres for the ocular delivery of a peptide drug, vancomycin using emulsification/spray-drying as the preparation method: in vitro/in vivo studies. Eur J Pharm Biopharm. 2004;57:207–212.
  • Gungor S, Okyar A, Erturk-Toker S, et al. Ondansetron-loaded chitosan microspheres for nasal antiemetic drug delivery: an alternative approach to oral and parenteral routes. Drug Dev Ind Pharm. 2010;36:806–813.
  • Ganza-Gonzalez A, Anguiano-Igea S, Otero-Espinar FJ, et al. Chitosan and chondroitin microspheres for oral-administration controlled release of metoclopramide. Eur J Pharm Biopharm. 1999;48:149–155.
  • Desai KGH, Park HJ. Preparation of cross-linked chitosan microspheres by spray drying: Effect of cross-linking agent on the properties of spray dried microspheres. J Microencapsul. 2005;22:377–395.
  • Angadi SC, Manjeshwar LS, Aminabhavi TM. Interpenetrating polymer network blend microspheres of chitosan and hydroxyethyl cellulose for controlled release of isoniazid. Int J Biol Macromol. 2010;47:171–179.
  • Harris R, Lecumberri E, Heras A. Chitosan-genipin microspheres for the controlled release of drugs: clarithromycin, tramadol and heparin. Mar Drugs. 2010;8:1750–1762.
  • de Salamanca A. E´q, Diebold Y, Calonge M, et al. Chitosan nanoparticles as a potential drug delivery system for the ocular surface: toxicity, uptake mechanism and in vivo tolerance. Invest Ophthalmol Vis Sci. 2006;47:1416–1425.
  • Shirvan AR, Nejad NH, Bashari A. Antibacterial finishing of cotton fabric via the chitosan/TPP self-assembled nano layers. Fibers Polym. 2014;15:1908–1914.
  • Asasutjarit R, Theerachayanan T, Kewsuwan P, et al. Development and evaluation of diclofenac sodium loaded-N-trimethyl chitosan nanoparticles for ophthalmic use. AAPS PharmSciTech. 2015;16:1013–1024.
  • Kong XY, Xu WH, Zhang CP, et al. Chitosan temperature-sensitive gel loaded with drug microspheres has excellent effectiveness, biocompatibility and safety as an ophthalmic drug delivery system. Exp Ther Med. 2018;15:1442–1448.
  • Sun Y, Gu L, Gao Y, et al. Preparation and characterization of 5-Fluorouracil loaded chitosan microspheres by a two-step solidification method. Chem Pharm Bull. 2010;58:891–895.
  • Cai J, Zhang Y, Du W, et al. Preparation and in vitro release of spray-dried chitosan microspheres for levofloxacin delivery. J Control Release. 2011;152: e70–e71.
  • Krtalic I, Radosevic S, Hafner A, et al. D-optimal design in the development of rheologically improved in situ forming ophthalmic gel. J Pharm Sci. 2018;107:1562–1571.
  • Ranch KM, Maulvi FA, Naik MJ, et al. Optimization of a novel in situ gel for sustained ocular drug delivery using Box-Behnken design: in vitro, ex vivo, in vivo and human studies. Int J Pharm. 2019;554:264–275.
  • Moreno JAS, Mendes AC, Stephansen K, et al. Development of electrosprayed mucoadhesive chitosan microparticles. Carbohydr Polym. 2018;190:240–247.
  • De Campos AM, Sanchez A, Gref R, et al. The effect of a PEG versus a chitosan coating on the interaction of drug colloidal carriers with the ocular mucosa. Eur J Pharm Sci. 2003;20:73–81.
  • Rassu G, Gavini E, Jonassen H, et al. New chitosan derivatives for the preparation of rokitamycin loaded microspheres designed for ocular or nasal administration. J Pharm Sci. 2009;98:4852–4865.
  • Chen P, Wang X, Dong Y, et al. Development of a layer-by-layer assembled film on hydrogel for ocular drug delivery. Int J Polym Sci. 2015;2015:1.
  • Kirchhof S, Goepferich AM, Brandl FP. Hydrogels in ophthalmic applications. Eur J Pharm Biopharm. 2015;95:227–238.
  • Vicario-de-la-Torre M, Benitez-del-Castillo JM, Vico E, et al. Design and characterization of an ocular topical liposomal preparation to replenish the lipids of the tear film. Invest Ophthalmol Vis Sci. 2014;55:7839–7847.
  • Kulkarni PV, Keshavayya J, Kulkarni VH. Effect of method of preparation and process variables on controlled release of insoluble drug from chitosan microspheres. Polym Adv Technol. 2007;18:814–821.
  • Peng HL, Xiong H, Li JH, et al. Vanillin cross-linked chitosan microspheres for controlled release of resveratrol. Food Chem. 2010;121:23–28.
  • El-Gibaly I. Development and in vitro evaluation of novel floating chitosan microcapsules for oral use: comparison with non-floating chitosan microspheres. Int J Pharm. 2002;249:7–21.
  • Desai KGH, Park HJ. Encapsulation of vitamin C in tripolyphosphate cross-linked chitosan microspheres by spray drying. J Microencapsul. 2005;22:179–192.
  • Karnchanajindanun J, Srisa-ard M, Baimark Y. Genipin-cross-linked chitosan microspheres prepared by a water-in-oil emulsion solvent diffusion method for protein delivery. Carbohydr Polym. 2011;85:674–680.
  • Diaz AG, Quinteros DA, Llabot JM. Spray dried microspheres based on chitosan: a promising new carrier for intranasal administration of polymeric antigen BLSOmp31 for prevention of ovine brucellosis. Mater Sci Eng C Mater Biol Appl. 2016;62:489–496.
  • Feng H, Zhang L, Zhu C. Genipin crosslinked ethyl cellulose-chitosan complex microspheres for anti-tuberculosis delivery. Colloids Surf B Biointerfaces. 2013;103:530–537.
  • Sharma HK, Mohapatra J, Nath LK. Development and characterisation of metformin loaded spray dried Bora rice microspheres. Pak J Pharm Sci. 2013;26:17–22.
  • Zeng S, Ye M, Qiu J, et al. Preparation and characterization of genipin-cross-linked silk fibroin/chitosan sustained-release microspheres. Drug Des Devel Ther. 2015;9:2501–2514.
  • Wang Q, Fu A, Li H, et al. Preparation of cellulose based microspheres by combining spray coagulating with spray drying. Carbohydr Polym. 2014;111:393–399.
  • Guerrero S, Teijon C, Muniz E, et al. Characterization and in vivo evaluation of ketotifen-loaded chitosan microspheres. Carbohydr Polym. 2010;79:1006–1013.
  • van der Lubben IM, Verhoef JC, Borchard G, et al. Chitosan and its derivatives in mucosal drug and vaccine delivery. Eur J Pharm Sci. 2001;14:201–207.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.