540
Views
51
CrossRef citations to date
0
Altmetric
Research Article

Formulation and optimization of intranasal nanolipid carriers of pioglitazone for the repurposing in Alzheimer’s disease using Box-Behnken design

, , &
Pages 1061-1072 | Received 14 Oct 2018, Accepted 04 Mar 2019, Published online: 28 Mar 2019

References

  • Saxena U. Bioenergetics breakdown in Alzheimer’s disease: targets for new therapies. Int J Physiol Pathophysiol Pharmacol. 2011;3:133–139.
  • Folch J, Petrov D, Ettcheto M, et al. Current research therapeutic strategies for Alzheimer’s disease treatment. Neural Plast. 2016;2016:1.
  • Watson GS, Craft S. The role of insulin resistance in the pathogenesis of Alzheimer’s disease: implications for treatment. CNS Drugs. 2003;17:27–45.
  • de la Monte SM, Wands JR. Alzheimer’s disease is Type 3 diabetes-evidence reviewed. J Diabetes Sci Technol. 2008;2:1101–1113.
  • Mullin R. Cost to develop new pharmaceutical drug now exceeds $2.5B. Sci Am. 2014;24.
  • Hu SH, Jiang T, Yang SS, et al. Pioglitazone ameliorates intracerebral insulin resistance and tau-protein hyperphosphorylation in rats with type 2 diabetes. Exp Clin Endocrinol Diabetes. 2013;121:220–224.
  • Sastre M, Dewachter I, Rossner S, et al. Nonsteroidal anti-inflammatory drugs repress beta-secretase gene promoter activity by the activation of PPARgamma. Proc Natl Acad Sci USA. 2006;103:443–448.
  • Camacho IE, Serneels L, Spittaels K, et al. Peroxisome proliferator-activated receptor gamma induces a clearance mechanism forthe amyloid-beta peptide. J Neurosci. 2004;24:10908–10917.
  • Bogacka I, Xie H, Bray GA, et al. Pioglitazone induces mitochondrial biogenesis in human subcutaneous adipose tissue in vivo. Diabetes. 2005;54:1392–1399.
  • Chen J, Li S, Sun W, et al. Anti-diabetes drug pioglitazone ameliorates synaptic defects in ad transgenic mice by inhibiting cyclin-dependent kinase5 activity. PloS One. 2015;10:e0123864.
  • Xing B, Xin T, Hunter RL, et al. Pioglitazone inhibition of lipopolysaccharide-induced nitric oxide synthase is associated with altered activity of p38 MAP kinase and PI3K/Akt. J Neuroinflammation. 2008;5:4.
  • Pathan AR, Viswanad B, Sonkusare SK, et al. Chronic administration of pioglitazone attenuates intracerebroventricular streptozotocin induced-memory impairment in rats. Life Sci. 2006;79:2209–2216.
  • Jiang LY, Su-Su T, Wang XY, et al. PPARγ agonist pioglitazone reverses memory impairment and biochemical changes in a mouse model of type 2 diabetes mellitus. CNS Neurosci Ther. 2012;18:659–666.
  • Li-ping L, Tian-hua Y, Li-ying J, et al. Pioglitazone ameliorates memory deficits in streptozotocin-induced diabetic mice by reducing brain β-amyloid through PPARγ activation. Acta Pharmacol Sin. 2013;34:455–463.
  • Yin Q-Q, Pei J-J, Xu S, et al. Pioglitazone improves cognitive function via increasing insulin sensitivity and strengthening antioxidant defense system in fructose-drinking insulin resistance rats. PLoS One. 2013;8:e59313.
  • Yang S, Chen Z, Cao M, et al. Pioglitazone ameliorates Aβ42 deposition in rats with diet-induced insulin resistance associated with AKT/GSK3β activation. Mol Med Rep. 2017;15:2588–2594.
  • Fernandez-Martos CM, Atkinson RAK, Chuah MI, et al. Combination treatment with leptin and pioglitazone in a mouse model of Alzheimer’s disease. Alzheimer’s Dement. 2017;3:92–106.
  • Maeshiba Y, Kiyota Y, Yamashita K, et al. Disposition of the new antidiabetic agent pioglitazone in rats, dogs, and monkeys. Arzneimittelforschung. 1997;47:29–35.
  • Landreth G, Jiang Q, Mandrekar S, et al. PPARgamma agonists as therapeutics for the treatment of Alzheimer’s disease. Neurotherapeutics. 2008;5:481–489.
  • Tornio A, Niemi M, Neuvonen PJ, et al. Trimethoprim and the CYP2C8*3 allele have opposite effects on the pharmacokinetics of pioglitazone. Drug Metab Dispos. 2008;36:73–80.
  • Nozawa T, Sugiura S, Nakajima M, et al. Involvement of organic anion transporting polypeptides in the transport of troglitazone sulfate: implications for understanding troglitazone hepatotoxicity. Drug Metab Dispos. 2004;32:291–294.
  • Kirchheiner J, Roots I, Goldammer M, et al. Effect of genetic polymorphisms in cytochrome p450 (CYP) 2C9 and CYP2C8 on the pharmacokinetics of oral antidiabetic drugs: clinical relevance. Clin Pharmacokinet. 2005;44:1209–1225.
  • Chang KL, Pee HN, Yang S, et al. Influence of drug transporters and stereoselectivity on the brain penetration of pioglitazone as a potential medicine against Alzheimer’s disease. Sci Rep. 2015;5:9000.
  • Jojo GM, Kuppusamy G. Scope of new formulation approaches in the repurposing of pioglitazone for the management of Alzheimer’s disease. J Clin Pharm Ther. [cited 2019 Feb 9]. DOI:10.1111/jcpt.12808.
  • Tuccori M, Filion KB, Yin H, et al. Pioglitazone use and risk of bladder cancer: population based cohort study. BMJ. 2016;352:i1541.
  • Dhuria SV, Hanson LR, Frey WH. 2nd. Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J Pharm Sci. 2010;99:1654–1673.
  • Thorne RG, Pronk G, Frey WH. Delivery of insulin-like growth factor-1 to the brain and spinal cord along olfactory and trigeminal pathways following intrantasal administration: a noninvasive method for bypassing the blood-brain barrier. Soc Neurosci Abstract. 2000;26:1365.
  • Hanson LR, Frey WH. II. Intranasal delivery bypasses the blood-brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease. BMC Neurosci. 2008;9:S5.
  • Woensel MV, Wauthoz N, Rosiere R, et al. Formulations for intranasal delivery of pharmacological agents to combat brain disease: a new opportunity to tackle GBM?. Cancers. 2013;5:1020–1048.
  • Ong WY, Shalini SM, Costantino L. Nose-to-brain drug delivery by nanoparticles in the treatment of neurological disorders. Curr Med Chem. 2014;21:4247–4256.
  • Fonseca-Santos B, Gremião MPD, Chorilli M. Nanotechnology-based drug delivery systems for the treatment of Alzheimer’s disease. Int J Nanomed. 2015;10:4981–5003.
  • Silva-Abreu M, Espinoza L, Halbaut L, et al. Comparative study of ex vivo transmucosal permeation of pioglitazone nanoparticles for the treatment of Alzheimer’s disease. Polymers. 2018;10:316.
  • Mukherjee S, Ray S, Thakur RS. Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian J Pharm Sci. 2009;71:349–358.
  • Ghasemiyeh P, Mohammadi-Samani S. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages. Res Pharm Sci. 2018;13:288–303.
  • Ozsoy Y, Gungor S, Cevher E. Nasal delivery of high molecular weight drugs. Molecules. 2009;14:3754–3779.
  • Snorradóttir BS, Gudnason PI, Thorsteinsson F, et al. Experimental design for optimizing drug release from silicone elastomer matrix and investigation of transdermal drug delivery. Eur J Pharm Sci. 2011;42:559–567.
  • Ranade SS, Thiagarajan P. Selection of a design for response surface. IOP Conf Ser: Mater Sci Eng. 2017;263:022043.
  • Klien W, Kordel W, Weiss M, et al. Updation of the OECD test guideline 107 partition coefficient n-octanol water OECD library intercomparison test on the HPLC method. Chemosphere. 1988;17:361–386.
  • Barauh UK, Kuppusamy G, Ravisankar V, et al. Optimization of chloquin loaded nanostructured lipid carriers using Box-Behnken design and its antimalarial efficacy. J DrugTarget. 2017;21:01.
  • Jain K, Sood S, Gowthamarajan K. Optimization of artemether-loaded NLC for intranasal delivery using central composite design. Drug Deliv. 2015;22:940–954.
  • Joshi M, Patravale V. Formulation and evaluation of Nanostructured Lipid Carrier (NLC)-based gel of Valdecoxib. Drug Dev Ind Pharm. 2006;32:C11–918.
  • Srinivasulu D. Sastry BS, Omprakash G. Development and validation of new RPHPLC method for determination of Pioglitazone HCL in pharmaceutical dosage forms. Int J Chem Res. 2010;1:18–20.
  • Talarico LB, Zibetti RG, Faria PC, et al. Anti-herpes simplex virus activity of sulfated galactans from the red seaweeds Gymnogongrus griffithsiae and Cryptonemia crenulata. Int J Biol Macromol. 2004;34:63–71.
  • Das S, Ng WK, Tan RB. Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs? Eur J Pharm Sci. 2012;47:139–151.
  • Rowe EL. Effect of emulsifier concentration and type on the particle size distribution of emulsions. J Pharm Sci. 1965;54:260–264.
  • Wulff-Pérez M, Torcello-Gómez A, Gálvez-Ruíz MJ, Martín Rodríguez A. Stability of emulsions for parenteral feeding: preparation and characterization of o/w nanoemulsions with natural oils and Pluronic f68 as surfactant. Food Hydrocoll. 2009;23:1096–1102.
  • Ebrahimi HA, Javadzadeh Y, Hamidi M, et al. Repaglinide-loaded solid lipid nanoparticles: effect of using different surfactants/stabilizers on physicochemical properties of nanoparticles. Daru. 2015;23:46.
  • Tan SW, Billa N, Roberts CR, et al. Surfactant effects on the physical characteristics of Amphotericin B-containing nanostructured lipid carriers. Colloids Surf A: Physicochem Eng Asp. 2010;372:73–79.
  • Fei H, Sanming L, Ran Y, et al. Effect of surfactants on the formation and characterization of a new type of colloidal drug delivery system: nanostructured lipid carriers. Colloids Surf A: Physicochem Eng Asp. 2008;315:210–216.
  • Li P, Ghosh A, Wagner RF, et al. Effect of combined use of nonionic surfactant on formation of oil-in-water microemulsions. Int J Pharm. 2005;288:27–34.
  • Pardeshi CV, Rajput PV, Belgamwar VS, et al. Novel surface modified solid lipid nanoparticles as intranasal carriers for ropinirole hydrochloride: application of factorial design approach. Drug Deliv. 2013;20:47–56.
  • Baviskar A, Hiremath S, Devanna N, et al. Influence of various process variables and formulation excipients on the engineering of sertaconazole solid lipid nanoparticles. IOSRPHR. 2016;6:51–63.
  • Saeedi M, Rafati MR, Morteza-Semnani K, et al. Evaluation of effect of tween 80 on characteristics of tadalafil 0.1% suspension. Mazums-PBR. 1:35–43.
  • Tao X, Li Y, Hu Q, et al. Preparation and drug release study of novel nanopharmaceuticals with polysorbate 80 surface adsorption. doi:10.1155/2018/4718045
  • Prabhakar K, Afzal SM, Surender G, et al. Tween 80 containing lipid nanoemulsion for delivery of indinavir to brain. Acta Pharm Sin B. 2013;3:345.
  • Reddy LH, Sharma RK, Chuttani K, et al. Etoposide-incorporated tripalmitin nanoparticles with different surface charge: formulation, characterization, radiolabeling, and biodistribution studies. AAPS J. 2004;6:55–64.
  • Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. JMB. 1965;13:238–252.
  • Kim DH, Termsarasab Cho HJ, et al. Preparation and characterization of self-assembled nanoparticles based on low-molecular-weight heparin and stearylamine conjugates for controlled delivery of docetaxel. Int J Nanomed. 2014;9:5711–5727.
  • Hu F-Q, Jiang S-P, Du Y-Z, et al. Preparation and characterization of stearic acid nanostructured lipid carriers by solvent diffusion method in an aqueous system. Colloids Surf B Biointerfaces. 2005;45:167–173.
  • Teeranachaideekul V, Souto EB, Junyaprasert VB, et al. Cetyl palmitate-based NLC for topical delivery of Coenzyme Q(10) – development, physicochemical characterization and in vitro release studies. Eur J Pharm Biopharm. 2007;67:141–148.
  • Mühlen AZ, Mühlen EZ, Niehus H, et al. Atomic force microscopy studies of solid lipid nanoparticles. Pharm Res. 1996;13:1411–1416.
  • Ramteke KH, Dighe PA, Kharat AR, Patil SV. Mathematical models of drug dissolution: a review. Sch Acad J Pharm. 2014;3:388–396.
  • Li Y, Ju D. Chapter 12 – the application, neurotoxicity, and related mechanism of cationic polymers. Neurotoxicity Nanomater Nanomed. 2017:285–329. doi:10.1016/B978-0-12-804598-5.00012-X.
  • Vidal F, Vásquez P, Cayumán FR, et al. Prevention of synaptic alterations and neurotoxic effects of PAMAM dendrimers by surface functionalization. Nanomaterials (Basel). 2017;258:7.
  • Gramowski A, Flossdorf J, Bhattacharya K, et al. Nanoparticles induce changes of the electrical activity of neuronal networks on microelectrode array neurochips. Environ Health Perspect. 2010;118:1363–1369.
  • https://www.drugbank.ca/salts/DBSALT000555. Last accessed on 21/01/2019.
  • https://www.cambridgemedchemconsulting.com/resources/ADME/distribution.html. Last accessed on 21/01/2019.
  • Arms L, Smith DW, Flynn J, et al. Advantages and limitations of current techniques for analyzing the biodistribution of nanoparticles. Front Pharmacol. 2018;9:802.
  • Oliveira P, Fortuna A, Alves G, et al. Drug-metabolizing enzymes and efflux transporters in nasal epithelium: influence on the bioavailability of intranasally administered drugs. Curr Drug Metab. 2016;17:628–647.
  • Hoosain FG, Choonara YE, Tomar LK, et al. Bypassing P-glycoprotein drug efflux mechanisms: possible applications in pharmacoresistant Schizophrenia therapy. Biomed Res Int. 2015:2015;1.
  • Yasir M, Singh Sara UV. Solid lipid nanoparticles for nose to brain delivery of haloperidol: in vitro drug release and pharmacokinetics evaluation. Acta Pharmaceutica Sin B. 2014;4:454–463.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.