540
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Design and development of a self-microemulsifying drug delivery system of olmesartan medoxomil for enhanced bioavailability

ORCID Icon, , , &
Pages 1292-1305 | Received 07 Dec 2018, Accepted 09 Apr 2019, Published online: 17 May 2019

References

  • World Health Organization. A global brief on hypertension – World Health Day 2013; Available from: http://www.who.int/iris/handle/10665/79059, 01 December 2018.
  • Zaman MA, Oparil S, Calhoun DA. Drugs targeting the renin-angiotensin-aldosterone system. Nat Rev Drug Discov. 2002;1(8):621–636.
  • Ntountaniotis D, Mali G, Grdadolnik SG. Thermal, dynamic and structural properties of drug AT1 antagonist olmesartan in lipid bilayers. Biochim Biophys Acta. 2011;1808:2995–3006.
  • Agata J, Ura N, Yoshida H, et al. Olmesartan is an angiotensin II receptor blocker with an inhibitory effect on angiotensin-converting enzyme. Hypertens Res. 2006;29:865–874.
  • Brunner HR. The new oral angiotensin II antagonist olmesartan medoxomil: a concise overview. J Hum Hypertens. 2002; 16 Suppl 2: S13–S16.
  • Laeis P, Puchler K, Kirch W. The pharmacokinetic and metabolic profile of olmesartan medoxomil limits the risk of clinically relevant drug interaction. J Hypertens Suppl. 2001;19(1):S21–S32.
  • Beg S, Sharma G, Thanki K, et al. Positively charged self-nanoemulsifying oily formulations of olmesartan medoxomil: systematic development, in vitro, ex vivo and in vivo evaluation. Int J Pharm. 2015;493:466–482.
  • Patel J, Dhingani A, Tilala J, et al. Formulation and development of self-nanoemulsifying granules of olmesartan medoxomil for bioavailability enhancement. Part Sci Technol. 2014;32(3).
  • Hazan L, Hernández Rodriguez OA, Bhorat AE, et al. A double-blind, dose-response study of the efficacy and safety of olmesartan medoxomil in children and adolescents with hypertension. Hypertension (Dallas, TX, 1979). 2010;55:1323–1330.
  • Gustafsson J, Ljusberg-Wahren H, Almgren M, et al. Cubic lipid–water phase dispersed into submicron particles. Langmuir. 1996;12(20):4611–4613.
  • Liversidge GG, Cundy KC, Bishop JF, et al. Surface modified drug nanoparticles. US patent 5,145,684. 1992. 2018 Dec 18.
  • Müller RH, Jacobs C, Kayser O. Nanosuspensions as particulate drug formulations in therapy: rationale for development and what we can expect for the future. Adv Drug Deliv Rev. 2001;47:3–19.
  • Jevprasesphant R, Penny J, Jalal R, et al. The influence of surface modification on the cytotoxicity of PAMAM dendrimers. Int J Pharm. 2003;252(1-2):263–266.
  • Kang MJ, Cho JY, Shim BH, et al. Bioavailability enhancing activities of natural compounds from medicinal plants. J Med Plants Res. 2009; 3(13):1204–1211.
  • Thakkar HP, Parmar MP, Patel AA, et al. Studies on inclusion complex as potential systems for enhancement of oral bioavailability of olmesartan medoxomil. Chronicles Young Sci. 2012;3(2).
  • Yadav AA, Yadav DS, Karekar PS, et al. Enhanced solubility and dissolution rate of Olmesartan medoxomil using crystallo-co-agglomeration technique. Pelagia Res Libr. 2012; 3(2):160–169.
  • Thakkar HP, Patel BV, Thakkar SP. Development and characterization of nanosuspensions of olmesartan medoxomil for bioavailability enhancement. J Pharm Bioall Sci. 2011;3:426–434.
  • Beg S, Rizwan M, Sheikh AM, et al. Advancement in carbon nanotubes: basics, biomedical applications and toxicity. J Pharm Pharmacol. 2011;63(2):141–163.
  • Sruthy PN, Anoop KR. Formulation and evaluation of olmesartan medoxomil floating tablets. Int J Pharm Pharm Sci. 2013;5 Suppl 3.
  • Arepalli B, Durraivel S. Enhancement of solubility and dissolution rate of olmesartan medoxomil by solid dispersion technique. J Chem Pharm Sci. 2014;7(2):89–94.
  • Zhang X, Xing H, Zhao Y, et al. Pharmaceutical dispersion techniques for dissolution and bioavailability enhancement of poorly water-soluble drugs. Pharmaceutics. 2018;10(3).
  • Bachynsky MO, Shah NH, Patel CI, et al. Factors affecting the efficiency of a self-emulsifying oral delivery system. Drug Dev Ind Pharm. 1997;23(8):809–816.
  • Zhang H, Yao M, Morrison RA, et al. Commonly used surfactant, Tween 80, improves absorption of P-glycoprotein substrate, digoxin, in rats. Arch Pharm Res. 2003;26(9):768–772.
  • Hugger ED, Novak BL, Burton PS, et al. A comparison of commonly used polyethoxylated pharmaceutical excipients on their ability to inhibit P-glycoprotein activity in vitro. J Pharm Sci. 2002;91:1991–2002.
  • Müllertz A, Ogbonna A, Ren S, et al. New perspectives on lipid and surfactant based drug delivery systems for oral delivery of poorly soluble drugs. J Pharm Pharmacol. 2010;62(11):1622–1636.
  • Hathout RM, Elshafeey AH. Development and characterization of colloidal soft nano-carriers for transdermal delivery and bioavailability enhancement of an angiotensin II receptor blocker. Eur J Pharm Biopharm. 2012;82:230–240.
  • Gorain B, Choudhury H, Biswas E, et al. A novel approach for nanoemulsion components screening and nanoemulsion assay of olmesartan medoxomil through a developed and validated HPLC method. RSC Adv. 2013;3:10887.
  • Barrefelt Å, Zhao Y, Larsson MK, et al. Fluorescence labeled microbubbles for multimodal imaging. Biochem Biophys Res Commun. 2015;464:737–742.
  • Wohnsland F, Faller B. High-throughput permeability pH profile and high-throughput alkane/water log P with artificial membranes. J Med Chem. 2001;44:923–930.
  • Bujard A, Sol M, Carrupt PA, et al. Predicting both passive intestinal absorption and the dissociation constant toward albumin using the PAMPA technique. Eur J Pharm Sci. 2014;63:36–44.
  • Kansy M, Senner F, Gubernator K. Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes. J Med Chem. 1998;41:1007–1010.
  • Burbure N, Lebwohl B, Arguelles-Grande C, et al. Olmesartan-associated sprue-like enteropathy: a systematic review with emphasis on histopathology. Hum Pathol. 2016;50:127–134.
  • Rubio-Tapia A, Herman ML, Ludvigsson JF, et al. Severe sprue like enteropathy associated with olmesartan. Mayo Clin Proc. 2012;87:732–738.
  • Gorain B, Choudhury H, Kundu A, et al. Nanoemulsion strategy for olmesartan medoxomil improves oral absorption and extended antihypertensive activity in hypertensive rats. Colloids Surfaces B Biointerfaces. 2014;115:286–294.
  • Shafiq S, Shakeel F, Talegaonkar S, et al. Development and bioavailability assessment of ramipril nanoemulsion formulation. Eur J Pharm Biopharm. 2007;66:227–243.
  • Article R. Preparation and characterization of naproxen loaded microemulsion formulations for dermal application. Int J Pharm. 2014;4(4):33–42.
  • Tashtoush BM, Bennamani AN, Al-Taani BM. Preparation and characterization of microemulsion formulations of nicotinic acid and its prodrugs for transdermal delivery. Pharm Dev Technol. 2013;18:834–843.
  • Bajerski L, Rossi RC, Dias CL, et al. Development and validation of a discriminating in vitro dissolution method for a poorly soluble drug, olmesartan medoxomil: comparison between commercial tablets. AAPS PharmSciTech. 2010;11:637–644.
  • Bari HC, Doijad RC, More HN, et al. Design and optimization of chlordiazepoxide solid self-microemulsifying drug delivery system. J Pharm Res. 2011;44(4):369–372.
  • Beg S, Jena SS, Patra CN, et al. Development of solid self-nanoemulsifying granules (SSNEGs) of ondansetron hydrochloride with enhanced bioavailability potential. Colloids Surf B Biointerfaces. 2013;101:414–423.
  • Jain AK, Thanki K, Jain S. Solidified self-nanoemulsifying formulation for oral delivery of combinatorial therapeutic regimen: Part I. formulation development, statistical optimization, and in vitro characterization. Pharm Res. 2014;31:923–945.
  • Han M, Fu S, Gao J-Q, et al. Evaluation of intestinal absorption of ginsenoside Rg1 incorporated in microemulsion using parallel artificial membrane permeability assay. Biol Pharm Bull. 2009;32(6):1069–1074.
  • Nielsen PE, Avdeef A. PAMPA – a drug absorption in vitro model: 8. Apparent filter porosity and the unstirred water layer. Eur J Pharm Sci. 2004;22(1):33–41.
  • Barrefelt Å, Saghafian M, Kuiper R, et al. Biodistribution, kinetics, and biological fate of SPION microbubbles in the rat. Int J Nanomedicine. 2013;8:3241–3254.
  • Studwell AJ, Kotton DN. A shift from cell cultures to creatures: in vivo imaging of small animals in experimental regenerative medicine. Mol Ther. 2011;19:1933–1941.
  • Panthani MG, Khan TA, Reid DK, et al. In vivo whole animal fluorescence imaging of a microparticle-based oral vaccine containing (CuInSe(x)S(2–x))/ZnS core/shell quantum dots. Nano Lett. 2013;13:4294–4298.
  • Quan L, Liu S, Sun T, et al. Near-infrared emitting fluorescent BODIPY nanovesicles for in vivo molecular imaging and drug delivery. ACS Appl Mater Interfaces. 2014;6:16166–16173.
  • Hellyer SD, Selwood AI, van Ginkel R, et al. In vitro labelling of muscle type nicotinic receptors using a fluorophore-conjugated pinnatoxin F derivative. Toxicon. 2014;87:17–25.
  • Mulvey JJ, Feinberg EN, Alidori S, et al. Synthesis, pharmacokinetics, and biological use of lysine-modified single-walled carbon nanotubes. Int J Nanomedicine. 2014;9:4245–4255.
  • Li YK, Lee WJ, Wu MF, et al. Estimating the delivery efficiency of drug-loaded microbubbles in cancer cells with ultrasound and bioluminescence imaging. Ultrasound Med. Biol. 2012;38(11):1938–1948.
  • Sadek SA, Rashed LA, Bassam AM, et al. Effect of aliskiren, telmisartan and torsemide on cardiac dysfunction in l-nitro arginine methyl ester (l-NAME) induced hypertension in rats. J Adv Res. 2015;6(6);967–974.
  • Lee BS, Kang MJ, Choi WS, et al. Solubilized formulation of olmesartan medoxomil for enhancing oral bioavailability. Arch Pharm Res. 2009;32:1629–1635.
  • Cecen B, Kozaci LD, Yuksel M, et al. Biocompatibility and biomechanical characteristics of loofah based scaffolds combined with hydroxyapatite, cellulose, poly-l-lactic acid with chondrocyte-like cells. Mater Sci Eng C. 2016;69:437–446.
  • Lawrence MJ, Rees GD. Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev. 2012;64:175–193.
  • FDA. Guidance for industry: bioanalytical method validation. Rockville, MD, USA: U.S. Department of Health and Human Services; 2013. [cited 2019Apr 24]. Available from: http://www.labcompliance.de/documents/FDA/FDA-Others/Laboratory/f-507-bioanalytical-4252fnl.pdf
  • Internation Conference on Harmonization-ICH. Guidance for industry: Q2B validation of analytical procedures: methodology. International Conference on Harmonisation and Technical Requirments for Registration of Tripartite Guidelines; 1996:13. DOI:62 FR 27464.
  • Godse VP, Bhosale AV, Bafana YS, et al. ICH guidance in practice: validated stability-indicating HPLC method for simultaneous determination of olmesartan medoxomil and hydrochlorothiazide in combination drug products. Eurasian J Anal Chem. 2010;5(2):137–144.
  • Cui J, Yu B, Zhao Y, et al. Enhancement of oral absorption of curcumin by self-microemulsifying drug delivery systems. Int J Pharm. 2009;371:148–155.
  • Qureshi MJ, Mallikarjun C, Kian WG. Enhancement of solubility and therapeutic potential of poorly soluble lovastatin by SMEDDS formulation adsorbed on directly compressed spray dried magnesium aluminometasilicate liquid loadable tablets: a study in diet induced hyperlipidemic rabbits. Asian J Pharm Sci. 2015;10:40–56.
  • Nekkanti V, Rueda J, Wang Z, et al. Comparative evaluation of proliposomes and self micro-emulsifying drug delivery system for improved oral bioavailability of nisoldipine. Int J Pharm. 2016;505:79–88.
  • Zhang Q, Polyakov NE, Chistyachenko YS, et al. Preparation of curcumin self-micelle solid dispersion with enhanced bioavailability and cytotoxic activity by mechanochemistry. Drug Deliv. 2018;25(1):198–209.
  • Gershanik T, Benita S. Self-dispersing lipid formulations for improving oral absorption of lipophilic drugs. Eur J Pharm Biopharm. 2000;50:179–188.
  • Stevanović MM, Skapin SD, Bracko I, et al. Poly(lactide-co-glycolide)/silver nanoparticles: synthesis, characterization, antimicrobial activity, cytotoxicity assessment and ROS-inducing potential. Polymer (Guildf). 2012;53(14):2818–2828.
  • Karamustafa F, Ćelebi N. Development of an oral microemulsion formulation of alendronate: effects of oil and co-surfactant type on phase behaviour. J Microencapsul. 2008;25:315–323.
  • Pouton CW. Lipid formulations for oral administration of drugs: non-emulsifying, self-emulsifying and ‘self-microemulsifying’ drug delivery systems. Eur J Pharm Sci. 2000;1 Suppl 2:93–98.
  • Spernath A, Aserin A, Garti N. Fully dilutable microemulsions embedded with phospholipids and stabilized by short-chain organic acids and polyols. J Colloid Interface Sci. 2006;299(2):900–909.
  • Djordjevic L, Primorac M, Stupar M, et al. Characterization of caprylocaproyl macrogolglycerides based microemulsion drug delivery vehicles for an amphiphilic drug. Int J Pharm. 2004;271:11–19.
  • ICH Expert Working Group. ICH guideline Q1A(R2) stability testing of new drug substances and products. Paper presented at: International Conference on Harmonization; 2003 Feb; Washington, D.C., USA; p. 24.
  • FDA. Guidance for industry dissolution testing of immediate. Evaluation. 1997;4:15–22.
  • Markovic BD, Vladimirov SM, Cudina OA, et al. A PAMPA assay as fast predictive model of passive human skin permeability of new synthesized corticosteroid C-21 esters. Molecules. 2012;17(1):480–491.
  • Buckley ST, Fischer SM, Fricker G, et al. In vitro models to evaluate the permeability of poorly soluble drug entities: challenges and perspectives. Eur J Pharm Sci. 2012;45(3):235–250.
  • Detroyer A, Stokbroekx S, Bohets H, et al. Fast monolithic micellar liquid chromatography: an alternative drug permeability assessing method for high-throughput screening. Anal Chem. 2004;76:7304–7309.
  • Benter IF, Yousif MHM, Anim JT, et al. Angiotensin-(1–7) prevents development of severe hypertension and end-organ damage in spontaneously hypertensive rats treated with l-NAME. Am J Physiol Circ Physiol. 2006;290(2):H684–691.
  • Mali VR, Mohan V, Bodhankar SL. Antihypertensive and cardioprotective effects of the Lagenaria siceraria fruit in NG-nitro-l-arginine methyl ester (l-NAME) induced hypertensive rats. Pharm Biol. 2012;50(11):1428–1435.
  • Nandi U, Karmakar S, Das AK, et al. Pharmacokinetics, pharmacodynamics and toxicity of a combination of metoprolol succinate and telmisartan in Wistar albino rats: safety profiling. Regul Toxicol Pharmacol. 2013;65:68–78.
  • Choi EYK, McKenna BJ. Olmesartan-associated enteropathy a review of clinical and histologic findings. Arch Pathol Lab Med. 2015;139:1242–1247.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.