2,833
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Stability test of novel combined formulated dry powder inhalation system containing antibiotic: physical characterization and in vitroin silico lung deposition results

, , , &
Pages 1369-1378 | Received 18 Jan 2019, Accepted 13 May 2019, Published online: 04 Jun 2019

References

  • Cystic fibrosis: symptoms, causes, and management Med News Today [Internet]. 2018 [cited 2018 Jul 2]. Available from: https://www.medicalnewstoday.com/articles/147960.php
  • Accurso FJ. 89 – Cystic fibrosis. In: Goldman L, Schafer AI, editors. Goldmans Cecil Med. 24th ed. Philadelphia: W.B. Saunders; 2012. p. 544–548.
  • Montgomery ST, Mall MA, Kicic A, et al. Hypoxia and sterile inflammation in cystic fibrosis airways: mechanisms and potential therapies. Eur Respir J. 2017;49:1600903.
  • Shamsuddin AKM, Quinton PM. Native small airways secrete bicarbonate. Am J Respir Cell Mol Biol. 2014;50:796–804.
  • Vallières E, Elborn JS. Cystic fibrosis gene mutations: evaluation and assessment of disease severity. Adv Genomics Genet. 2014;4:161–172.
  • FAARC MM RRT. PulmoSalTM 7% (pH+) Bio-BalancedTM Hypertonic Saline [Internet]; [cited 2018 Jul 2]. Available from: https://westmedinc.com/pulmosal/
  • Goss CH, Burns JL. Exacerbations in cystic fibrosis. 1: epidemiology and pathogenesis. Thorax. 2007;62:360–367.
  • Rogers DF. Mucociliary dysfunction in COPD: effect of current pharmacotherapeutic options. Pulm Pharmacol Ther. 2005;18:1–8.
  • Strong P, Ito K, Murray J, et al. Current approaches to the discovery of novel inhaled medicines. Drug Discov Today. 2018;23:1705–1717.
  • Donald PR, McIlleron H. Chapter 59 – antituberculosis drugs. In: Schaaf HS, Zumla AI, Grange JM, et al., editors. Tuberculosis. Edinburgh: W.B. Saunders; 2009.
  • Stockmann C, Sherwin CMT, Zobell JT, et al. Optimization of anti‐pseudomonal antibiotics for cystic fibrosis pulmonary exacerbations: III. Fluoroquinolones. Pediatr Pulmonol. 2013;48:211–220.
  • Karimi K, Pallagi E, Szabó-Révész P, et al. Development of a microparticle-based dry powder inhalation formulation of ciprofloxacin hydrochloride applying the quality by design approach. Drug Des Devel Ther. 2016;10:3331–3343.
  • Denis O, Rodriguez-Villalobos H, Struelens MJ. Chapter 3 – the problem of resistance. In: Finch RG, Greenwood D, Norrby SR, et al., editors. Antibiotic and Chemotherapy. 9th ed. London: Saunders; 2010.
  • Bosso JA. Use of ciprofloxacin in cystic fibrosis patients. Am J Med. 1989;87:S123–S127.
  • Yapa SWS, Li J, Patel K, et al. Pulmonary and systemic pharmacokinetics of inhaled and intravenous colistin methanesulfonate in cystic fibrosis patients: targeting advantage of inhalational administration. Antimicrob Agents Chemother. 2014;58:2570–2579.
  • Pomázi A, Szabó-Révész P, Ambrus R. Pulmonal administration, aspects of DPI formulation. Gyógyszerészet. 2009;53:397–404.
  • Pomázi A, Chvatal A, Ambrus R, et al. Potential formulation methods and pharmaceutical investigations of dry powder inhalers. Gyógyszerészet. 2014;58:131–139.
  • Ambrus R, Benke E, Farkas Á, et al. Novel dry powder inhaler formulation containing antibiotic using combined technology to improve aerodynamic properties. Eur J Pharm Sci. 2018;123:20–27.
  • Muralidharan P, Hayes D, Mansour HM. Dry powder inhalers in COPD, lung inflammation and pulmonary infections. Expert Opin Drug Deliv. 2015;12:947–962.
  • Varshosaz J, Taymouri S, Hamishehkar H, et al. Development of dry powder inhaler containing tadalafil-loaded PLGA nanoparticles. Res Pharma Sci. 2017;12:222–232.
  • Yadav N, Lohani A. Dry powder inhalers: a review. Indo Glob J Pharm Sci. 2013;3:142–155.
  • Hooton JC, Jones MD, Harris H, et al. The influence of crystal habit on the prediction of dry powder inhalation formulation performance using the cohesive-adhesive force balance approach. Drug Dev Ind Pharm. 2008;34:974–983.
  • Patil S, Mahadik A, Nalawade P, et al. Crystal engineering of lactose using electrospray technology: carrier for pulmonary drug delivery. Drug Dev Ind Pharm. 2017;43:2085–2091.
  • Benke E, Szabó-Révész P, Hopp B, et al. Characterization and development opportunities of carrier-based dry powder inhaler systems. Acta Pharm Hung. 2017;87:59–68.
  • Demoly P, Hagedoorn P, de Boer AH, et al. The clinical relevance of dry powder inhaler performance for drug delivery. Respir Med. 2014;108:1195–1203.
  • Chvatal A, Farkas Á, Balásházy I, et al. Aerodynamic properties and in silico deposition of meloxicam potassium incorporated in a carrier-free DPI pulmonary system. Int J Pharm. 2017;520:70–78.
  • Benke E, Szabó-Révész P, Ambrus R. Development of ciprofloxacin hydrochloride containing dry powder inhalation system with an innovative technology. Acta Pharm Hung. 2017;87:49–58.
  • Karimi K, Katona G, Csóka I, et al. Physicochemical stability and aerosolization performance of dry powder inhalation system containing ciprofloxacin hydrochloride. J Pharm Biomed Anal. 2018;148:73–79.
  • Shetty N, Zeng L, Mangal S, et al. Effects of moisture-induced crystallization on the aerosol performance of spray dried amorphous ciprofloxacin powder formulations. Pharm Res. 2018;35:7.
  • Akdag Cayli Y, Sahin S, Buttini F, et al. Dry powders for the inhalation of ciprofloxacin or levofloxacin combined with a mucolytic agent for cystic fibrosis patients. Drug Dev Ind Pharm. 2017;43:1378–1389.
  • Adi H, Young PM, Chan H-K, et al. Cospray dried antibiotics for dry powder lung delivery. J Pharm Sci. 2008;97:3356–3366.
  • Elborn JS. Ciprofloxacin dry powder inhaler in cystic fibrosis. BMJ Open Respir Res. 2016;3:1–2.
  • McShane PJ, Weers JG, Tarara TE, et al. Ciprofloxacin dry powder for inhalation (ciprofloxacin DPI): technical design and features of an efficient drug–device combination. Pulm Pharmacol Ther. 2018;50:72–79.
  • Cocconi D, Dagli Alberi M, Busca A, et al. Use of magnesium stearate in dry powder formulations for inhalation; [Internet]; 2012; [cited 2018 Apr 11]. Available from: https://patents.google.com/patent/US20120082727A1/en
  • Parlati C, Colombo P, Buttini F, et al. Pulmonary spray dried powders of tobramycin containing sodium stearate to improve aerosolization efficiency. Pharm Res. 2009;26:1084–1092.
  • Plastira M [Internet]. The influence of magnesium stearate and carrier surface on the deposition performance of carrier based dry powder inhaler formulations. PhD thesis; 2008. Available from: https://purehost.bath.ac.uk/ws/portalfiles/portal/187950065/Plastira-May-2008.pdf.
  • Zhu B, Haghi M, Nguyen A, et al. Delivery of theophylline as dry powder for inhalation. Asian J Pharm Sci. 2015;10:520–527.
  • Hamishehkar H, Rahimpour Y, Javadzadeh Y. The role of carrier in dry powder inhaler. In: Sezer AD, editor. Recent Adv Nov Drug Carr Syst.; [Internet]. InTech; 2012 [cited 2019 Mar 21]. Available from: http://www.intechopen.com/books/recent-advances-in-novel-drug-carrier-systems/the-role-of-carrier-in-dry-powder-inhaler
  • Buttini F, Cuoghi E, Miozzi M, et al. Insulin spray-dried powder and smoothed lactose: a new formulation strategy for nasal and pulmonary delivery; [Internet]. ResearchGate; 2012; [cited 2018 Apr 11]. Available from: https://www.researchgate.net/publication/284045495_Insulin_spray-dried_powder_and_smoothed_lactose_a_new_formulation_strategy_for_nasal_and_pulmonary_delivery
  • Lau M, Young PM, Traini D. Co-milled API-lactose systems for inhalation therapy: impact of magnesium stearate on physico-chemical stability and aerosolization performance. Drug Dev Ind Pharm. 2017;43:980–988.
  • Hazare S, Menon M. Improvement of inhalation profile of DPI formulations by carrier treatment with magnesium stearate. Indian J Pharm Sci. 2009;71:725–727.
  • Schuster JM, Schvezov CE, Rosenberger MR. Analysis of the results of surface free energy measurement of Ti6Al4V by different methods. Proc Mater Sci. 2015;8:732–741.
  • Farkas B, Révész P. Kristályosítástól a tablettázásig [From crystallization until tabletting procedure]. Universitas Szeged; 2007.
  • Tüske Z [Internet]. Influence of the surface free energy on the parameters of pellets. PhD thesis; 2005. Available from: http://doktori.bibl.u-szeged.hu/242/1/Tuske-tezisek.pdf.
  • Brochures – Copley scientific; [Internet]; 2015 [cited 2018 Aug 23]. Available from: http://www.copleyscientific.com/downloads/brochures
  • Benke E, Farkas Á, Balásházy I, et al. The actuality of devices for the delivery of dry powder inhalation, formulations and modern assemblies I. Gyógyszerészet/Pharm. 2018;62:131–139.
  • Simon A, Amaro MI, Cabral LM, et al. Development of a novel dry powder inhalation formulation for the delivery of rivastigmine hydrogen tartrate. Int J Pharm. 2016;501:124–138.
  • Parlati C [Internet]. Respirable microparticles of aminoglycoside antibiotics for pulmonary administration. PhD thesis; 2008. Available from: http://dspace-unipr.cineca.it/bitstream/1889/1080/1/C.Parlati_PhDThesis.pdf.
  • Koblinger L, Hofmann W. Monte Carlo modeling of aerosol deposition in human lungs. Part I: simulation of particle transport in a stochastic lung structure. J Aerosol Sci. 1990;21:661–674.
  • Cheng YS. Aerosol deposition in the extrathoracic region. Aerosol Sci Technol. 2003;37:659–671.
  • Raabe OG, Yeh H, Schum GM, et al. Tracheobronchial geometry: human, dog, rat, hamster – a compilation of selected data from the project respiratory tract deposition models. United States: Department of Commerce, US Gov. Print. Off; 1976.
  • Haefeli-Bleuer B, Weibel ER. Morphometry of the human pulmonary acinus. Anat Rec. 1988;220:401–414.
  • Colthorpe P, Voshaar T, Kieckbusch T, et al. Delivery characteristics of a low-resistance dry-powder inhaler used to deliver the long-acting muscarinic antagonist glycopyrronium. J Drug Assess. 2013;2:11–16.
  • Miller DP, Tan T, Nakamura J, et al. Physical characterization of tobramycin inhalation powder: II. State diagram of an amorphous engineered particle formulation. Mol Pharm. 2017;14:1950–1960.
  • Pomázi A, Ambrus R, Szabó-Révész P. Physicochemical stability and aerosolization performance of mannitol-based microcomposites. J Drug Deliv Sci Technol. 2014;24:397–403.
  • Lewis D, Rouse T, Singh D, et al. Defining the ‘dose’ for dry powder inhalers: the challenge of correlating in-vitro dose delivery results with clinical efficacy; [Internet]; 2017; [cited 2018 Jul 12]. Available from: https://www.americanpharmaceuticalreview.com/Featured-Articles/337338-Defining-the-Dose-for-Dry-Powder-Inhalers-The-Challenge-of-Correlating-In-Vitro-Dose-Delivery-Results-with-Clinical-Efficacy/
  • Arpagaus C, Schafroth N, Meur M. Laboratory scale spray drying of lactose: a review; [Internet]; 2010; [cited 2018 Jul 13]. Available from: https://www.buchi.com/en/content/laboratory-scale-spray-drying-lactose-review