284
Views
11
CrossRef citations to date
0
Altmetric
Research Articles

Effect of casting solvent, film-forming agent and solubilizer on orodispersible films of a polymorphic poorly soluble drug: an in vitro/in silico study

, ORCID Icon &
Pages 1751-1769 | Received 29 Mar 2019, Accepted 10 Aug 2019, Published online: 02 Sep 2019

References

  • Rahma NS. Drug delivery: oral route. In: Swarbrick J, editor. Encyclopedia of pharmaceutical science and technology. 4th ed. Boka Raton: Taylor & Francis; 2013. p. 1122–1149.
  • Nagaraju T, Gowthami R, Rajashekar M, et al. Comprehensive review on oral disintegrating films. Curr Drug Del. 2013;10:96–108.
  • Dixit RP, Puthli SP. Oral strip technology: overview and future potential. J Control Release. 2009;139:94–107.
  • Visser JC, Woerdenbag HJ, Hanff LM, et al. Personalized medicine in pediatrics: the clinical potential of orodispersible films [journal article]. AAPS PharmSciTech. 2017;18:267–272.
  • Bala R, Pawar P, Khanna S, et al. Orally dissolving strips: a new approach to oral drug delivery system. Int J Pharma Investig. 2013;3:67–76.
  • Krampe R, Visser JC, Frijlink HW, et al. Oromucosal film preparations: points to consider for patient centricity and manufacturing processes. Expert Opin Drug Deliv. 2016;13:493–506.
  • Borges AF, Silva C, Coelho JFJ, et al. Oral films: current status and future perspectives: I-Galenical development and quality attributes. J Control Release. 2015;206:1–19.
  • Council of Europe. European Pharmacopoeia. 8th ed. Strasbourg: Council of Europe; 2014.
  • In-PharmaTechnologist.com. Zengen claims a first with drug-laden oral strip France: William Reed Business Media SAS; 2003. [cited 2017 July 23]. Available from: http://www.in-pharmatechnologist.com/Processing/Zengen-claims-a-first-with-drug-laden-oral-strip.
  • In-PharmaTechnologist.com. Novartis launches first systemic OTC in film strip format France: William Reed Business Media SAS; 2004. [cited 2017 July 23]. Available from: http://www.in-pharmatechnologist.com/Ingredients/Novartis-launches-first-systemic-OTC-in-film-strip-format
  • Saigal N, Baboota S, Ahuja A, et al. Fast-dissolving intra-oral drug delivery systems. Expert Opin Ther Pat. 2008;18:769–781.
  • Krull SM, Ammirata J, Bawa S, et al. Critical material attributes of strip films loaded with poorly water-soluble drug nanoparticles: II. Impact of polymer molecular weight. J Pharm Sci. 2017;106:619–628.
  • Sayed S, Ibrahim HK, Mohamed MI, et al. Fast-dissolving sublingual films of terbutaline sulfate: formulation and in vitro/in vivo evaluation. Mol Pharmaceutics. 2013;10:2942–2947.
  • Deepthi A, Reddy BV, Navaneetha K. Formulation and evaluation of fast dissolving oral films of zolmitriptan. Am J Adv Drug Deliv. 2014;2:153–163.
  • Mahesh A, Shastri N, Sadanandam M. Development of taste masked fast disintegrating films of levocetirizine dihydrochloride for oral use. CDD. 2010;7:21–27.
  • Schobel AM, Vangala SS, inventors; Google Patents, assignee. Solid dosage form containing a taste masked active agent patent US20070292515A1. 2015.
  • Liew KB, Tan YTF, Peh KK. Effect of polymer, plasticizer and filler on orally disintegrating film. Drug Dev Ind Pharm. 2014;40:110–119.
  • Krull SM, Patel HV, Li M, et al. Critical material attributes (CMAs) of strip films loaded with poorly water-soluble drug nanoparticles: I. Impact of plasticizer on film properties and dissolution. Eur J Pharm Sci. 2016;92:146–155.
  • Jain D, Bar-Shalom D. Alginate drug delivery systems: application in context of pharmaceutical and biomedical research. Drug Dev Ind Pharm. 2014;40:1576–1584.
  • Shelke PV, Dumbare A, Gadhave M, et al. Formulation and evaluation of rapidly disintegrating film of amlodipine besylate. J Drug Delivery Ther. 2012;2:72–75.
  • Preis M, Woertz C, Kleinebudde P, et al. Oromucosal film preparations: classification and characterization methods. Expert Opin Drug Deliv. 2013;10:1303–1317.
  • Kraemer J, Gajendran J, Guillot A, et al. Dissolution testing of orally disintegrating tablets. J Pharm Pharmacol. 2012;64:911–918.
  • Shohin IE, Kulinich JI, Ramenskaya GV, et al. Biowaiver monographs for immediate release solid oral dosage forms: piroxicam. J Pharm Sci. 2014;103:367–377.
  • Okuyama H, Ikeda Y, Kasai S, et al. Influence of non-ionic surfactants, pH and propylene glycol on percutaneous absorption of piroxicam from cataplasm. Int J Pharm. 1999;186:141–148.
  • Jinno J, Oh D-M, Crison JR, et al. Dissolution of ionizable water-insoluble drugs: the combined effect of pH and surfactant. J Pharm Sci. 2000;89:268–274.
  • Banerjee R, Chakraborty H, Sarkar M. Photophysical studies of oxicam group of NSAIDs: piroxicam, meloxicam and tenoxicam. Spectrochimica Acta A Mol Biomol Spectrosc. 2003;59:1213–1222.
  • Pliska V, Testa B, van de Waterbeemd H, et al. Lipophilicity in drug action and toxicology. Weinheim: VCH Publishers; 1996.
  • Paaver U, Lust A, Mirza S, et al. Insight into the solubility and dissolution behavior of piroxicam anhydrate and monohydrate forms. Int J Pharm. 2012;431:111–119.
  • Taniguchi C, Kawabata Y, Wada K, et al. Microenvironmental pH-modification to improve dissolution behavior and oral absorption for drugs with pH-dependent solubility. Expert Opin Drug Deliv. 2014;11:505–516.
  • Mihalic M, Hofman H, Kajfez F, et al. Physicochemical and analytical characteristics of piroxicam. Acta Pharm Jugosl. 1982;32:13–20.
  • Lavrič Z, Pirnat J, Lužnik J, et al. 14N Nnuclear quadrupole resonance study of piroxicam: confirmation of new polymorphic form V. J Pharm Sci. 2015;104:1909–1918.
  • Nyström M, Roine J, Murtomaa M, et al. Solid state transformations in consequence of electrospraying – a novel polymorphic form of piroxicam. Eur J Pharm Biopharm. 2015;89:182–189.
  • Lyn L, Sze H, Rajendran A, et al. Crystal modifications and dissolution rate of piroxicam. Acta Pharmaceutica. 2011;61:391–402.
  • Dumortier G, Grossiord J, Agnely F, et al. A review of poloxamer 407 pharmaceutical and pharmacological characteristics. Pharm Res. 2006;23:2709–2728.
  • ISO 9276-6:2008. Representation of results of particle size analysis - Part 6: Descriptive and quantitative representation of particle shape and morphology. Geneva, Switzerland: International Organization for Standardization; 2008.
  • ASTM D624-00(2012). Standard test method for tear strength of conventional vulcanized rubber and thermoplastic elastomers. West Conshohocken (PA): ASTM International; 2012.
  • Mitchell J. Jr Methods for the determination of water in polymers. Anal Chim Acta. 1976;81:231–263.
  • Tran PL, Tran TTD, Lee KH, et al. Dissolution-modulating mechanism of pH modifiers in solid dispersion containing weakly acidic or basic drugs with poor water solubility. Expert Opin Drug Deliv. 2010;7:647–661.
  • Khan KA. The concept of dissolution efficiency. J Pharm Pharmacol. 1975;27:48–49.
  • Harland RS, Dubernet C, Benoît J-P, et al. A model of dissolution-controlled, diffusional drug release from non-swellable polymeric microspheres. J Control Release. 1988;7:207–215.
  • Higuchi T. Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci. 1963;52:1145–1149.
  • Mitchell JS. The role of molecular orientation in photochemical reactions in monolayers. J Chem Phys. 1936;4:725–730.
  • Ritger PL, Peppas NA. A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J Control Release. 1987;5:37–42.
  • Ahuja N, Katare OP, Singh B. Studies on dissolution enhancement and mathematical modeling of drug release of a poorly water-soluble drug using water-soluble carriers. Eur J Pharm Biopharm. 2007;65:26–38.
  • De Brabander C, Vervaet C, Remon JP. Development and evaluation of sustained release mini-matrices prepared via hot melt extrusion. J Control Release. 2003;89:235–247.
  • Moore JW, Flanner HH. Mathematical comparison of dissolution profiles. Pharm Technol. 1996;20:64–74.
  • Agoram B, Woltosz WS, Bolger MB. Predicting the impact of physiological and biochemical processes on oral drug bioavailability. Adv Drug Del Rev. 2001;50:S41–S67.
  • Tubic-Grozdanis M, Bolger MB, Langguth P. Application of gastrointestinal simulation for extensions for biowaivers of highly permeable compounds. AAPS J. 2008;10:213–226.
  • Stulzer HK, Tagliari MP, Cruz AP, et al. Compatibility studies between piroxicam and pharmaceutical excipients used in solid dosage forms. Pharm Chem J. 2008;42:215–219.
  • Varshosaz J, Khajavinia A, Ghasemlu M, et al. Enhancement in dissolution rate of piroxicam by two micronization techniques. Dissolution Technol. 2013;20:15–23.
  • Soares JP, Santos JE, Chierice GO, et al. Thermal behavior of alginic acid and its sodium salt. Eclet Quím. 2004;29:57–63.
  • Mura P, Bettinetti GP, Cirri M, et al. Solid-state characterization and dissolution properties of naproxen–arginine–hydroxypropyl-β-cyclodextrin ternary system. Eur J Pharm Biopharm. 2005;59:99–106.
  • Vrecˇer F, Srcˇicˇ S, Sˇmid-Korbar J. Investigation of piroxicam polymorphism. Int J Pharm. 1991;68:35–41.
  • Lai F, Pini E, Angioni G, et al. Nanocrystals as tool to improve piroxicam dissolution rate in novel orally disintegrating tablets. Eur J Pharm Biopharm. 2011;79:552–558.
  • Hansen TB, Qu H. Formation of piroxicam polymorphism in solution crystallization: effect and interplay of operation parameters. Crystal Growth Design. 2015;15:4694–4700.
  • ElMeshad A, El Hagrasy A. Characterization and optimization of orodispersible mosapride film formulations. AAPS PharmSciTech. 2011;12:1384–1392.
  • Beck C, Sievens-Figueroa L, Gärtner K, et al. Effects of stabilizers on particle redispersion and dissolution from polymer strip films containing liquid antisolvent precipitated griseofulvin particles. Powder Technol. 2013;236:37–51.
  • Krull SM, Susarla R, Afolabi A, et al. Polymer strip films as a robust, surfactant-free platform for delivery of BCS Class II drug nanoparticles. Int J Pharm. 2015;489:45–57.
  • Timmins P, Pygall SR, Melia CD. Hydrophilic matrix tablets for oral controlled release. New York (NY): Springer; 2014.
  • Warren DB, Benameur H, Porter CJH, et al. Using polymeric precipitation inhibitors to improve the absorption of poorly water-soluble drugs: a mechanistic basis for utility. J Drug Target. 2010;18:704–731.
  • Hoffmann EM, Breitenbach A, Breitkreutz J. Advances in orodispersible films for drug delivery. Expert Opin Drug Deliv. 2011;8:299–316.
  • Krull SM, Ma Z, Li M, et al. Preparation and characterization of fast dissolving pullulan films containing BCS class II drug nanoparticles for bioavailability enhancement. Drug Dev Ind Pharm. 2016;42:1073–1085.
  • Visser JC, Dohmen WMC, Hinrichs WLJ, et al. Quality by design approach for optimizing the formulation and physical properties of extemporaneously prepared orodispersible films. Int J Pharm. 2015;485:70–76.
  • Visser JC, Woerdenbag HJ, Crediet S, et al. Orodispersible films in individualized pharmacotherapy: The development of a formulation for pharmacy preparations. Int J Pharm. 2015;478:155–163.
  • Tran PHL, Tran HTT, Lee BJ. Modulation of microenvironmental pH and crystallinity of ionizable telmisartan using alkalizers in solid dispersions for controlled release. J Control Release. 2008; 129:59–65.
  • Arakawa T, Kita Y, Koyama AH. Solubility enhancement of gluten and organic compounds by arginine. Int J Pharm. 2008;355:220–223.
  • Hirano A, Kameda T, Arakawa T, et al. Arginine-assisted solubilization system for drug substances: solubility experiment and simulation. J Phys Chem B. 2010;114:13455–13462.
  • Ha NS, Tran TT-D, Tran P-L, et al. Dissolution-enhancing mechanism of alkalizers in poloxamer-based solid dispersions and physical mixtures containing poorly water-soluble valsartan. Chem Pharm Bull. 2011;59:844–850.
  • Preis M, Gronkowsky D, Grytzan D, et al. Comparative study on novel test systems to determine disintegration time of orodispersible films. J Pharm Pharmacol. 2014;66:1102–1111.
  • Dissolution methods. United States: FDA; 2015. [updated 2015 Nov 19]. Available from: http://www.accessdata.fda.gov/scripts/cder/dissolution/index.cfm.
  • Tonnesen HH, Karlsen J. Alginate in drug delivery systems. Drug Dev Ind Pharm. 2002;28:621–630.
  • Mahjour M, Kesisoglou F, Cruanes M, et al. Effect of added alkalizer and surfactant on dissolution and absorption of the potassium salt of a weakly basic poorly water-soluble drug. J Pharm Sci. 2014;103:1811–1818.
  • Marasini N, Tran TH, Poudel BK, et al. Fabrication and evaluation of pH-modulated solid dispersion for telmisartan by spray-drying technique. Int J Pharm. 2013;441:424–432.
  • Patel JR, Carlton RA, Yuniatine F, et al. Preparation and structural characterization of amorphous spray-dried dispersions of tenoxicam with enhanced dissolution. J Pharm Sci. 2012;101:641–663.
  • Qi X, Zhang J, Wang W, et al. Solubility and stability of indomethacin in arginine-assisted solubilization system. Pharm Dev Technol. 2013;18:852–855.
  • Korsmeyer RW, Gurny R, Doelker E, et al. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm. 1983;15:25–35.
  • Kovačević I, Parojčić J, Homšek I, et al. Justification of biowaiver for carbamazepine, a low soluble high permeable compound, in solid dosage forms based on IVIVC and gastrointestinal simulation. Mol Pharmaceutics. 2009;6:40–47.
  • Honório dTS, Pinto EC, Rocha HVA, et al. In vitro–in vivo correlation of efavirenz tablets using GastroPlus® [journal article]. AAPS PharmSciTech. 2013;14:1244–1254.
  • Duque MD. Determination of absorption curves, dissolution profiles and establishment of in vitro-in vivo correlation by in silico methods using GastroPlusTM and DDDPlusTM. São Paulo: University of São Paulo; 2016.
  • Tsume Y, Langguth P, Garcia-Arieta A, et al. In silico prediction of drug dissolution and absorption with variation in intestinal pH for BCS class II weak acid drugs: ibuprofen and ketoprofen. Biopharm Drug Dispos. 2012;33:366–377.
  • Jiang W, Kim S, Zhang X, et al. The role of predictive biopharmaceutical modeling and simulation in drug development and regulatory evaluation. Int J Pharm. 2011;418:151–160.
  • Helmy SA, El-Bedaiwy HM. Piroxicam immediate release formulations: a fasting randomized open-label crossover bioequivalence study in healthy volunteers. Clin Pharmacol Drug Develop. 2014;3:466–471.
  • Piscitelli DA, Bigora S, Propst C, et al. The impact of formulation and process changes on in vitro dissolution and the bioequivalence of piroxicam capsules. Pharm Develop Technol. 1998;3:443–452.
  • Rasetti-Escargueil C, Grangé V. Pharmacokinetic profiles of two tablet formulations of piroxicam. Int J Pharm. 2005;295:129–134.
  • Woolf AD, Rogers HJ, Bradbrook ID, et al. Pharmacokinetic observations on piroxicam in young adult, middle-aged and elderly patients. Br J Clin Pharmacol. 1983;16:433–437.
  • FDA Guidance for Industry: Bioavailability and bioequivalence studies submitted in NDAs or INDs-General considerations. 2014. Available from: https://www.fda.gov/media/88254/download.
  •  European Medicines Agency. CPMP/EWP/QWP/1401/98. Rev.1. Guideline on the investigation of bioequivalence. 2010. Available from: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-investigation-bioequivalence-rev1_en.pdf.
  • Okumu A, DiMaso M, Löbenberg R. Computer simulations using GastroPlus™ to justify a biowaiver for etoricoxib solid oral drug products. Eur J Pharm Biopharm. 2009;72:91–98.
  • Zhu H, Zhou H, Seitz K, et al. Bioavailability and bioequivalence. In: Chen Y, Zhang GGZ, Liu L, editors. Developing solid oral dosage forms. San Diego (CA): Academic Press; 2009. p. 341–364.
  • Takamatsu N, Welage LS, Idkaidek NM, et al. Human intestinal permeability of piroxicam, propranolol, phenylalanine, and PEG 400 determined by jejunal perfusion. Pharm Res. 1997;14:1127–1132.
  • Kortejärvi H, Urtti A, Yliperttula M. Pharmacokinetic simulation of biowaiver criteria: the effects of gastric emptying, dissolution, absorption and elimination rates. Eur J Pharm Sci. 2007;30:155–166.
  • Amidon GL, Lennernas H, Shah VP, et al. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12:413–420.
  • Yazdanian M, Briggs K, Jankovsky C, et al. The “High Solubility” definition of the current FDA guidance on biopharmaceutical classification system may be too strict for acidic drugs. Pharm Res. 2004;21:293–299.
  • Yu LX, Amidon GL, Polli JE, et al. Biopharmaceutics classification system: the scientific basis for biowaiver extensions. Pharm Res. 2002;19:921–925.
  • WHO Expert Committee on Specifications for Pharmaceutical Preparations. Fortieth Report. Geneva; 2006. (WHO Technical Report Series; 937). Available from: https://apps.who.int/medicinedocs/documents/s14091e/s14091e.pdf.
  • Dressman J, Butler J, Hempenstall J, et al. The BCS: where do we go from here? Pharm Technol. 2001;25:68–77.
  • Dressman JB, Amidon GL, Reppas C, et al. Dissolution testing as a prognostic tool for oral drug absorption: immediate release dosage forms. Pharm Res. 1998;15:11–22.
  • Parrott N, Lukacova V, Fraczkiewicz G, et al. Predicting pharmacokinetics of drugs using physiologically based modeling-application to food effects. AAPS J. 2009;11:45–53.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.