584
Views
22
CrossRef citations to date
0
Altmetric
Review Article

Microemulsions as transdermal drug delivery systems for nonsteroidal anti-inflammatory drugs (NSAIDs): a literature review

ORCID Icon & ORCID Icon
Pages 1849-1855 | Received 28 Jul 2019, Accepted 30 Sep 2019, Published online: 22 Oct 2019

References

  • Peppin JF, Pappagallo M. Capsaicinoids in the treatment of neuropathic pain: a review. Ther Adv Neurol Disord. 2014;7(1):22–32.
  • Figueiredo V. Ibuprofen nanoparticles for oral delivery: proof of concept. J Nanomed Biother Discov. 2014;4:1–5.
  • Derry S, Moore RA, Rabbie R. Topical NSAIDs for chronic musculoskeletal pain in adults. Cochrane Database Syst Rev. 2016;12:CD007400.
  • Baraf HSB, Gold MS, Petruschke RA, et al. Tolerability of topical diclofenac sodium 1% gel for osteoarthritis in seniors and patients with comorbidities. Am J Geriatr Pharmacother. 2012;10(1):47–60.
  • Benbow T, Campbell J. Comparison of the topical analgesic effects of a novel diclofenac microemulsion to a marketed diclofenac macroemulsion formulation in rats using the tail flick test. J. Dev. Drugs. 2018;7:1–6.
  • Jepps OG, Dancik Y, Anissimov YG, et al. Modeling the human skin barrier — towards a better understanding of dermal absorption. Adv Drug Deliv Rev. 2013;65(2):152–168.
  • Dias SFL, Nogueira SS, de França Dourado F, et al. Acetylated cashew gum-based nanoparticles for transdermal delivery of diclofenac diethyl amine. Carbohydr Polym. 2016;143:254–261.
  • Schoellhammer CM, Blankschtein D, Langer R. Skin permeabilization for transdermal drug delivery: recent advances and future prospects. Expert Opin Drug Deliv. 2014;11(3):393–407.
  • Díaz-González F, Sánchez-Madrid F. NSAIDs: learning new tricks from old drugs. Eur J Immunol. 2015;45(3):679–686.
  • Herrera-García A, Domínguez-Luis M, Arce-Franco M, et al. In vivo modulation of the inflammatory response by nonsteroidal antiinflammatory drug-related compounds that trigger l-selectin shedding. Eur J Immunol. 2013;43(1):55–64.
  • Warner TD, Giuliano F, Vojnovic I, et al. Nonsteroid drug selectivities for cyclo-oxygenase-1 rather than cyclo-oxygenase-2 are associated with human gastrointestinal toxicity: a full in vitro analysis. Proc Natl Acad Sci USA. 1999;96(13):7563–7568.
  • Talcott PA, Gwaltney-Brant SM. Chapter 65 – nonsteroidal antiinflammatories. In: Peterson ME, Talcott PA, editors. Small animal toxicology. 3rd ed. St. Louis, Mo.: W.B. Saunders; 2013. p. 687–708.
  • Woodland AN, Van der Saag D, Kimble B, et al. Plasma pharmacokinetic profile and efficacy of meloxicam administered subcutaneously and intramuscularly to sheep. PLoS ONE. 2019;14(4):e0215842.
  • Medina-López R, Vara-Gama N, Soria-Arteche O, et al. Pharmacokinetics and pharmacodynamics of (S)-ketoprofen co-administered with caffeine: a preclinical study in arthritic rats. Pharmaceutics. 2018;10(1):20.
  • Delzer LM, Golightly LK, Kiser TH, et al. Calcineurin inhibitor and nonsteroidal anti-inflammatory drug interaction: implications of changes in renal function associated with concurrent use. J Clin Pharmacol. 2018;58(11):1443–1451.
  • Burger DM, Te Brake LHM, Aarnoutse RE. Mechanisms of drug interactions I: absorption, metabolism, and excretion. In: Pai MP, Kiser JJ, Gubbins PO, et al., editors. Drug interactions in infectious diseases: mechanisms and models of drug interactions. Switzerland: Springer International Publishing; 2018. p. 15–47.
  • Keegan MT. Endocrine pharmacology. In: Hemmings HC, Egan TD, editors. Pharmacology and physiology for anesthesia. 2nd ed. Elsevier; 2019. p. 708–731.
  • Kawai S. Cyclooxygenase selectivity and the risk of gastro-intestinal complications of various non-steroidal anti-inflammatory drugs: a clinical consideration. Inflamm Res. 1998;47(0):102–106.
  • Marsico F, Paolillo S, Filardi PP. NSAIDs and cardiovascular risk. J Cardiovasc Med. 2017;18:e40–e43.
  • Carazo E, Borrego-Sánchez A, García-Villén F, et al. Advanced inorganic nanosystems for skin drug delivery. Chem Rec. 2018;18(7–8):891–899.
  • Cevc G, Vierl U. Nanotechnology and the transdermal route: a state of the art review and critical appraisal. J Control Release. 2010;141(3):277–299.
  • Nastiti C, Ponto T, Abd E, et al. Topical nano and microemulsions for skin delivery. Pharmaceutics. 2017;9(4):37–25.
  • Choudhury H, Gorain B, Pandey M, et al. Recent update on nanoemulgel as topical drug delivery system. J Pharm Sci. 2017;106(7):1736–1751.
  • Ita K. Progress in the use of microemulsions for transdermal and dermal drug delivery. Pharm Dev Technol. 2017;22(4):467–475.
  • Marwah H, Garg T, Goyal AK, et al. Permeation enhancer strategies in transdermal drug delivery. Drug Deliv. 2016;23(2):564–578.
  • Flaten GE, Palac Z, Engesland A, et al. In vitro skin models as a tool in optimization of drug formulation. Eur J Pharm Sci. 2015;75:10–24.
  • Thakkar PJ, Madan P, Lin S. Transdermal delivery of diclofenac using water-in-oil microemulsion: formulation and mechanistic approach of drug skin permeation. Pharm Dev Technol. 2014;19(3):373–384.
  • Watkinson AC, Kearney M-C, Quinn HL, et al. Future of the transdermal drug delivery market—have we barely touched the surface? Expert Opin Drug Deliv. 2016;13(4):523–532.
  • Shakeel F, Ramadan W, Gargum HM, et al. Preparation and in vivo evaluation of indomethacin loaded true nanoemulsions. Sci Pharm. 2010;78(1):47–56.
  • Lopes LB. Overcoming the cutaneous barrier with microemulsions. Pharmaceutics. 2014;6(1):52–77.
  • Shakeel F, Baboota S, Ahuja A, et al. Skin permeation mechanism and bioavailability enhancement of celecoxib from transdermally applied nanoemulsion. J Nanobiotechnol. 2008;6(1):8.
  • Malik DS, Mital N, Kaur G. Topical drug delivery systems: a patent review. Expert Opin Ther Pat. 2016;26:213–228.
  • Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26(11):1261.
  • Hu X-B, Kang R-R, Tang T-T, et al. Topical delivery of 3,5,4′-trimethoxy-trans-stilbene-loaded microemulsion-based hydrogel for the treatment of osteoarthritis in a rabbit model. Drug Deliv Transl Res. 2019;9(1):357–365.
  • Okur NÜ, Çağlar EŞ, Arpa MD, et al. Preparation and evaluation of novel microemulsion-based hydrogels for dermal delivery of benzocaine. Pharm Dev Technol. 2017;22:500–510.
  • Morales JO, Fathe KR, Brunaugh A, et al. Challenges and future prospects for the delivery of biologics: oral mucosal, pulmonary, and transdermal routes. AAPS J. 2017;19(3):652–668.
  • Ho DN, Sun S. The gap between cell and animal models: nanoparticle drug-delivery development and characterization using microtissue models. Ther Deliv. 2012;3(8):915–917.
  • Stoicea N, Fiorda-Diaz J, Joseph N, et al. Advanced analgesic drug delivery and nanobiotechnology. Drugs. 2017;77(10):1069–1076.
  • Poh Y, Ng S, Ho K. Formulation and characterisation of 1-ethyl-3-methylimidazolium acetate-in-oil microemulsions as the potential vehicle for drug delivery across the skin barrier. J Mol Liq. 2019;273:339–345.
  • Derle D, Sagar B, Pimpale S. Microemulsion as a vehicle for transdermal permeation of nimesulide. Indian J Pharm Sci. 2006;68(5):622.
  • Sidat Z, Marimuthu T, Kumar P, et al. Ionic liquids as potential and synergistic permeation enhancers for transdermal drug delivery. Pharmaceutics. 2019;11(2):96.
  • Rao PPN, Kabir SN, Mohamed T. Nonsteroidal anti-inflammatory drugs (NSAIDs): progress in small molecule drug development. Pharmaceuticals. 2010;3(5):1530–1549.
  • Goodarzi F, Zendehboudi S. Effects of salt and surfactant on interfacial characteristics of water/oil systems: molecular dynamic simulations and dissipative particle dynamics. Ind Eng Chem Res. 2019;58:8817–8834.
  • Mu J, Motokawa R, Akutsu K, et al. A novel microemulsion phase transition: toward the elucidation of third-phase formation in spent nuclear fuel reprocessing. J Phys Chem B. 2018;122(4):1439–1452.
  • Paliwal H, Solanki RS, Chauhan CS, et al. Pharmaceutical considerations of microemulsion as a drug delivery system. J Drug Deliv Ther. 2019;9:661–665.
  • Deng Y, Yang F, Zhao X, et al. Improving the skin penetration and antifebrile activity of ibuprofen by preparing nanoparticles using emulsion solvent evaporation method. Eur J Pharm Sci. 2018;114:293–302.
  • Shakeel F, Baboota S, Ahuja A, et al. Nanoemulsions as vehicles for transdermal delivery of aceclofenac. AAPS PharmSciTech. 2007;8(4):191.
  • Pedro SN, Freire MG, Freire CSR, et al. Deep eutectic solvents comprising active pharmaceutical ingredients in the development of drug delivery systems. Expert Opin Drug Deliv. 2019;16(5):497–506.
  • Negi P, Singh B, Sharma G, et al. Phospholipid microemulsion-based hydrogel for enhanced topical delivery of lidocaine and prilocaine: QbD-based development and evaluation. Drug Deliv. 2016;23(3):941–957.
  • Joshi MD, Prabhu RH, Patravale VB. Fabrication of nanostructured lipid carriers (NLC)-based gels from microemulsion template for delivery through skin. In: Weissig V, Elbayoumi T, editors. Pharmaceutical nanotechnology: basic protocols. New York: Springer; 2019. p. 279–292.
  • Kaur J, Kaur J, Jaiswal S, et al. Recent advances in topical drug delivery system. Pharm Res. 2016;6:6353–6369.
  • Rai VK, Mishra N, Yadav KS, et al. Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: formulation development, stability issues, basic considerations and applications. J Control Release. 2018;270:203–225.
  • Kim H, Kim JT, Barua S, et al. Seeking better topical delivery technologies of moisturizing agents for enhanced skin moisturization. Expert Opin Drug Deliv. 2018;15(1):17–31.
  • Delgado-Charro MB, Iglesias-Vilas G, Blanco-Méndez J, et al. Delivery of a hydrophilic solute through the skin from novel microemulsion systems. Eur J Pharm Biopharm. 1997;43(1):37–42.
  • de Campos Araújo LMP, Thomazine JA, Lopez RFV. Development of microemulsions to topically deliver 5-aminolevulinic acid in photodynamic therapy. Eur J Pharm Biopharm. 2010;75(1):48–55.
  • Ghayempour S, Montazer M. A modified microemulsion method for fabrication of hydrogel Tragacanth nanofibers. Int J Biol Macromol. 2018;115:317–323.
  • Chen L, Annaji M, Kurapati S, et al. Microemulsion and microporation effects on the genistein permeation across dermatomed human skin. AAPS PharmSciTech. 2018;19(8):3481–3489.
  • Neubert RHH. Potentials of new nanocarriers for dermal and transdermal drug delivery. Eur J Pharm Biopharm. 2011;77(1):1–2.
  • Kaur G, Mehta SK. Developments of polysorbate (Tween) based microemulsions: preclinical drug delivery, toxicity and antimicrobial applications. Int J Pharm. 2017;529(1–2):134–160.
  • Dehghani F, Farhadian N, Golmohammadzadeh S, et al. Preparation, characterization and in-vivo evaluation of microemulsions containing tamoxifen citrate anti-cancer drug. Eur J Pharm Sci. 2017;96:479–489.
  • Bolko K, Zvonar A, Gašperlin M. Mixed lipid phase SMEDDS as an innovative approach to enhance resveratrol solubility. Drug Dev Ind Pharm. 2014;40(1):102–109.
  • Zadymova NM, Poteshnova MV. Microemulsions and microheterogeneous microemulsion-based polymeric matrices for transdermal delivery of lipophilic drug (Felodipine). Colloid Polym Sci. 2019;297(3):453–468.
  • Khayat NW, El Donia AA, Mady OY, et al. Optimization of eugenol microemulsion for transdermal delivery of indomethacin. J Drug Deliv Sci Technol. 2018;48:311–318.
  • Salimi A, Jafarinezhad S, Kalantari A. Transdermal delivery of ketorolac tromethamine using microemulsion vehicles. Jundishapur J Nat Pharm Prod. 2018;13:1–8.
  • Hajjar B, Zier K-I, Khalid N, et al. Evaluation of a microemulsion-based gel formulation for topical drug delivery of diclofenac sodium. J Pharm Investig. 2018;48(3):351–362.
  • Barakat N, Fouad E, Elmedany A. Enhancement of skin permeation and anti-inflammatory effect of indomethacin using microemulsion. Asian J Pharm. 2011;5(3):141–149.
  • Biswal B, Karna N, Nayak J, et al. Formulation and evaluation of microemulsion based topical hydrogel containing lornoxicam. J Appl Pharm Sci. 2014;4:77–84.
  • Ali FR, Shoaib MH, Yousuf RI, et al. Design, development, and optimization of dexibuprofen microemulsion based transdermal reservoir patches for controlled drug delivery. Biomed Res Int. 2017;2017:1.
  • Matsumoto M, Inoue M, Ueda H. NSAID zaltoprofen possesses novel anti-nociceptive mechanism through blockage of B2-type bradykinin receptor in nerve endings. Neurosci Lett. 2006;397(3):249–253.
  • Li L, Ma P, Cao Y, et al. Single-dose and multiple-dose pharmacokinetics of zaltoprofen after oral administration in healthy Chinese volunteers. J Biomed Res. 2012;25(1):56–62.
  • Mishra R, Prabhavalkar KS, Bhatt LK. Preparation, optimization, and evaluation of Zaltoprofen-loaded microemulsion and microemulsion-based gel for transdermal delivery. J Liposome Res. 2016;26(4):297–306.
  • Roohnikan M, Laszlo E, Babity S, et al. A snapshot of transdermal and topical drug delivery research in Canada. Pharmaceutics. 2019;11(6):256.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.