146
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Mesoporous silica particles as potential carriers for protein drug delivery: protein immobilization and the effect of displacer on γ-globulin release

, &
Pages 576-586 | Received 10 Aug 2019, Accepted 10 Mar 2020, Published online: 25 Mar 2020

References

  • AzoNano. Silicon dioxide, silica (SiO2) nanoparticles – properties, applications. Manchester: [cited 2019 Apr 24]. Available from: https://www.azonano.com/article.aspx?ArticleID=3398
  • Kwon S, Singh RK, Perez RA, et al. Silica-based mesoporous nanoparticles for controlled drug delivery. J Tissue Eng. 2013;4:204173141350335–204173141350318.
  • Radin S, Chen T, Ducheyne P. The controlled release of drugs from emulsified, sol gel processed silica microspheres. Biomaterials. 2009;30(5):850–858.
  • Klichko Y, Liong M, Choi E, et al. Mesostructured silica for optical functionality, nanomachines, and drug delivery. J Am Ceramic Soc. 2009;92 (S1):S2–S10.
  • Meseguer-Olmo L, Ros-Nicolàs MJ, Vicente-Ortega V, et al. A bioactive sol-gel glass implant for in vivo gentamicin release. Experimental model in rabbit. J Orthop Res. 2006;24(3):454–460.
  • Radin S, El-Bassyouni G, Vresilovic EJ, et al. In vivo tissue response to resorbable silica xerogels as controlled-release materials. Biomaterials. 2005;26(9):1043–1052.
  • Kortesuo P, Ahola M, Karlsson S, et al. Silica xerogel as an implantable carrier for controlled drug delivery-evaluation of drug distribution and tissue effects after implantation. Biomaterials. 2000;21(2):193–198.
  • Nechikkattu R, Park SS, Ha C. Zwitterionic functionalised mesoporous silica nanoparticles for alendronate release. Microporous Mesoporous Mater. 2019;279:117–127.
  • Peri JB, Hensley AL. Jr. The surface structure of silica gel. J Phys Chem. 1968;72(8):2926–2933.
  • Owens GJ, Singh RK, Foroutan F, et al. Sol–gel based materials for biomedical applications. Prog Mater Sci. 2016;77:1–79.
  • Rabe M, Verdes D, Seeger S. Understanding protein adsorption phenomena at solid surfaces. Adv Colloid Interface Sci. 2011;162(1–2):87–106.
  • Meissner J, Prause A, Bharti B, et al. Characterization of protein adsorption onto silica nanoparticles: influence of pH and ionic strength. Colloid Polym Sci. 2015;293(11):3381–3391.
  • Bremer MGEG, Duval J, Norde W, et al. Electrostatic interactions between immunoglobulin (IgG) molecules and a charged sorbent. Colloids Surf A. 2004;250(1-3):29–42.
  • Larsericsdotter H, Oscarsson S, Buijs J. Thermodynamic analysis of proteins adsorbed on silica particles: electrostatic effects. J Colloid Interface Sci. 2001;237(1):98–103.
  • Gitlin I, Carbeck JD, Whitesides GM. Why are proteins charged? Networks of charge–charge interactions in proteins measured by charge ladders and capillary electrophoresis. Angew Chem Int Ed. 2006;45(19):3022–3060.
  • Spiegelberg HL. Biological role of different antibody classes. Int Arch Allergy Immunol. 1989;90(1):22–27.
  • Rankl M, Ruckstuhl T, Rabe M, et al. Conformational reorientation of immunoglobulin G during nonspecific interaction with surfaces. Chem Eur J Chem Phys. 2006;7(4):837–846.
  • Norde W, Giacomelli CE. BSA structural changes during homomolecular exchange between the adsorbed and the dissolved states. J Biotechnol. 2000;79(3):259–268.
  • Felsovalyi F, Mangiagalli P, Bureau C, et al. Reversibility of the adsorption of lysozyme on silica. Langmuir. 2011;27(19):11873–11882.
  • Norde W, Anusiem ACI. Adsorption, desorption and re-adsorption of proteins on solid surfaces. Colloids Surf. 1992;66(1):73–80.
  • Takahashi H, Li B, Sasaki T, et al. Immobilized enzymes in ordered mesoporous silica materials and improvement of their stability and catalytic activity in organic solvent. Microporous Mesoporous Mater. 2001;44–45:755–762.
  • Norde W, Lyklema J. Interfacial behaviour of proteins, with special reference to immunoglobulins. A physicochemical study. Adv Colloid Interface Sci. 2012;179–182:5–13.
  • Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. J Am Chem Soc. 1938;60 (2):309–319.
  • Huang X, Young NP, Townley HE. Characterization and comparison of mesoporous silica particles for optimized drug delivery. Nanomater Nanotechnol. 2014;4:2–15.
  • Zhang W, Li S, Zhang J, et al. Synthesis and adsorption behavior study of magnetic fibrous mesoporous silica. Microporous Mesoporous Mater. 2019;282:15–21.
  • Sing K, Everett D, Haul R, et al. Reporting physisorption data for gas/solid systems. Pure Appl Chem. 1985;57(4):603–619.
  • Alothman ZA. A review: fundamental aspects of silicate mesoporous materials. Materials. 2012;5(12):2874–2902.
  • Hlady V, Buijs J, Jennissen HP. Methods for studying protein adsorption. Meth Enzymol. 1999;309:402–409.
  • Freifelder D. Physical chemistry for students of biology and chemistry. Boston (MA): Science Books International, Inc.; 1982. p. 639–650.
  • Clemments AM, Botella P, Landry CC. Protein adsorption from biofluids on silica nanoparticles: corona analysis as a function of particle diameter and porosity. ACS Appl Mater Interfaces. 2015;7(39):21682–21689.
  • Qi W, Li X, Chen B, et al. Intramesoporous silica structure differentiating protein loading density. Mater Lett. 2012;75:102–106.
  • Lei C, Chen B, Li X, et al. Non-destructively shattered mesoporous silica for protein drug delivery. Microporous Mesoporous Mater. 2013;175:157–160.
  • Armstrong JK, Wenby RB, Meiselman HJ, et al. The hydrodynamic radii of macromolecules and their effect on red blood cell aggregation. Biophys J. 2004;87(6):4259–4270.
  • Liu C, Guo Y, Hong Q, et al. Bovine serum albumin adsorption in mesoporous titanium dioxide: pore size and pore chemistry effect. Langmuir. 2016;32(16):3995–4003.
  • Liu B, Cao S, Deng X, et al. Adsorption behavior of protein onto siloxane microspheres. Appl Surf Sci. 2006;252(22):7830–7836.
  • Kondo A, Oku S, Higashitani K. Adsorption of gamma-globulin, a model protein for antibody, on colloidal particles. Biotechnol Bioeng. 1991;37(6):537–543.
  • Demanèche S, Chapel J, Monrozier L, et al. Dissimilar pH-dependent adsorption features of bovine serum albumin and α-chymotrypsin on mica probed by AFM. Colloids Surf B. 2009;70(2):226–231.
  • Haynes CA, Norde W. Globular proteins at solid-liquid interfaces. Colloids Surf B Biointerfaces. 1994;2(6):517–566.
  • Li S, Hu J, Liu B. A study on the adsorption behaviour of protein onto functional microspheres. J Chem Technol Biotechnol. 2005;80(5):531–536.
  • Urabe Y, Shiomi T, Itoh T, et al. Encapsulation of hemoglobin in mesoporous silica (FSM)—enhanced thermal stability and resistance to denaturants. ChemBioChem. 2007;8(6):668–674.
  • Schlossbauer A, Schaffert D, Kecht J, et al. Click chemistry for high-density biofunctionalization of mesoporous silica. J Am Chem Soc. 2008;130(38):12558–12559.
  • Carlsson N, Gustafsson H, Thörn C, et al. Enzymes immobilized in mesoporous silica: a physical-chemical perspective. Adv Colloid Interface Sci. 2014;205:339–360.
  • Zhang T, Zhu G, Lu B, et al. Concentration-dependent protein adsorption at the nano–bio interfaces of polymeric nanoparticles and serum proteins. Nanomedicine. 2017;12(22):2757–2769.
  • FTIR Analysis of Protein Structure. London. [cited 2019 Mar 03]. Available from: https://www.chem.uwec.edu/chem455_s05/pages/manuals/FTIR_of_proteins.pdf
  • Wang Z, Liu Q, Yu J, et al. Surface structure and catalytic behavior of silica-supported copper catalysts prepared by impregnation and sol–gel methods. Appl Catal A. 2003;239(1–2):87–94.
  • Khdary NH, Ghanem MA, Abdesalam ME, et al. Sequestration of CO2 using Cu nanoparticles supported on spherical and rod-shape mesoporous silica. J Saudi Chem Soc. 2018;22(3):343–351.
  • Haris PI. Can infrared spectroscopy provide information on protein–protein interactions? Biochem Soc Trans. 2010;38(4):940–946.
  • Haris PI, Chapman D. Does Fourier-transform infrared spectroscopy provide useful information on protein structures? Amsterdam, Netherlands: Elsevier Science Publications; 1997. p. 328–333.
  • Welin-Klinström S, Askendal A, Elwing H. Surfactant and protein interactions on wettability gradient surfaces. J Colloid Interface Sci. 1993;158:188–194.
  • Rapoza RJ, Horbett TA. The effects of concentration and adsorption time on the elutability of adsorbed proteins in surfactant solutions of varying structures and concentrations. J Colloid Interface Sci. 1990;136(2):480–493.
  • La Mesa C. Polymer–surfactant and protein–surfactant interactions. J Colloid Interface Sci. 2005;286(1):148–157.
  • Lee TH, Lin SY. Pluronic F68 enhanced the conformational stability of salmon calcitonin in both aqueous solution and lyophilized solid form. Biopolymers. 2011;95(11):785–791.
  • Krivosheeva O, Dedinaite A, Claesson Per M. Salt- and pH-induced desorption: comparison between non-aggregated and aggregated mussel adhesive protein, Mefp-1, and a synthetic cationic polyelectrolyte. J Colloid Interface Sci. 2013;408:82–86.
  • Wahlgren M, Arnebrant T. Removal of lysozyme from methylated silicon oxide surfaces by a non-ionic surfactant, pentaethylene glycol mono n-dodecyl ether (C12 E5). Colloids Surf B. 1996;6(2):63–69.
  • Otzen D. Protein-surfactant interactions: a tale of many states. Biochim Biophys Acta. 2011;1814(5):562–591.
  • Bentaleb A, Ball V, Haïkel Y, et al. Kinetics of the homogeneous exchange of lysozyme adsorbed on a titanium oxide surface. Langmuir. 1997;13(4):729–735.
  • Norde W, Favier JP. Structure of adsorbed and desorbed proteins. Colloid Surf. 1992;64(1):87–93.
  • Greenfield N. Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc. 2006;1(6):2876–2890.
  • Jafari M, Mehrnejad F, Rahimi F, et al. The molecular basis of the sodium dodecyl sulfate effect on human ubiquitin structure: a molecular dynamics simulation study. Sci Rep. 2018;8 (1):1–15.
  • England JL. Stabilization and release effects of Pluronic F127 in protein drug delivery. J Undergr Sci. 2015;5:17–24.
  • Mollmann SH, Elofsson U, Bukrinsky JT, et al. Displacement of adsorbed insulin by Tween 80 monitored using total internal reflection fluorescence and ellipsometry. Pharm Res. 2005;22(11):1931–1941.
  • Di Russo NV, Estrin DA, Martı´ MA, et al. pH-Dependent conformational changes in proteins and their effect on experimental pKas: the case of nitrophorin 4. Plos Comput Biol. 2012;8:1–9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.