235
Views
31
CrossRef citations to date
0
Altmetric
Research Articles

Sonication tailored enhance cytotoxicity of naringenin nanoparticle in pancreatic cancer: design, optimization, and in vitro studies

, &
Pages 659-672 | Received 25 Dec 2019, Accepted 17 Mar 2020, Published online: 08 Apr 2020

References

  • Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.
  • Lu Z, Su J, Li Z, et al. Hyaluronic acid-coated, prodrug-based nanostructured lipid carriers for enhanced pancreatic cancer therapy. Drug Dev Ind Pharm. 2017;43(1):160–170.
  • Schutte M, Hruban RH, Geradts J, et al. Abrogation of the Rb/p16 tumor-suppressive pathway in virtually all pancreatic carcinomas. Cancer Res. 1997;57:3126–3130.
  • Pomerantz J, Schreiber-Agus N, Liégeois NJ, et al. The Ink4a tumor suppressor gene product, p19Arf, Interacts with MDM2 and Neutralizes MDM2’s Inhibition of p53. Cell. 1998;92(6):713–723.
  • Akhter MH, Madhav NS, Ahmad J. Epidermal growth factor based active targeting: a paradigm shift towards advance tumor therapy. Artif Cells Nanomed Biotech. 2018;46(2):1–11.
  • Amanam I, Chung V. Targeted therapies for pancreatic cancer. Cancers (Basel). 2018;10(2):36.
  • Li WL, Zheng HC, Bukuru J, et al. Natural medicines used in the traditional Chinese medical system for therapy of diabetes mellitus. J Ethnopharmacol. 2004;92(1):1–21.
  • Alam MA, Subhan N, Rahman MM, et al. Effect of citrus flavonoids, naringin and naringenin, on metabolic syndrome and their mechanisms of action. Adv Nutr. 2014;5(4):404–417.
  • Sun H, Dong T, Zhang A, et al. Pharmacokinetics of hesperetin and naringenin in the Zhi Zhu Wan, a traditional Chinese medicinal formulae, and its pharmacodynamics study. Phytother Res. 2013;27(9):1345–1351.
  • Hsiu SL, Huang TY, Hou YC, et al. Comparison of metabolic pharmacokinetics of naringin and naringenin in rabbits. Life Sci. 2002;70(13):1481–1489.
  • Kapoor DN, Bhatia A, Kaur R, et al. PLGA: a unique polymer for drug delivery. Ther Deliv. 2015;6(1):41–58.
  • Shulman M, Cohen M, Soto-Gutierrez A, et al. Correction: enhancement of naringenin bioavailability by complexation with hydroxypropoyl-β-cyclodextrin. PLoS One. 2011;6(4):e18033.
  • Zhu D, Tao W, Zhang H, et al. Docetaxel (DTX)-loaded polydopamine-modified TPGS-PLA nanoparticles as a targeted drug delivery system for the treatment of liver cancer. Acta Biomater. 2016;30:144–154.
  • Peng Y, Nie J, Cheng W, et al. A multifunctional nanoplatform for cancer chemo-photothermal synergistic therapy and overcoming multidrug resistance. Biomater Sci. 2018;6(5):1084–1098.
  • Liu G, Gao N, Zhou Y, et al. Polydopamine-based “Four-in-One” versatile nanoplatforms for targeted dual chemo and photothermal synergistic cancer therapy. Pharmaceutics. 2019;11(10):507.
  • Cheng W, Zeng X, Chen H, et al. Versatile polydopamine platforms: synthesis and promising applications for surface modification and advanced nanomedicine. ACS Nano. 2019;13(8):8537–8565.
  • Nie J, Cheng W, Peng Y, et al. Co-delivery of docetaxel and bortezomib based on a targeting nanoplatform for enhancing cancer chemotherapy effects. Drug Deliv. 2017;24(1):1124–1138.
  • Akhter MH, Amin S. An investigative approach to the treatment modalities of squamous cell carcinoma. Curr Drug Deliv. 2017;14:597–612.
  • Akhter MH. 2017. Multifunctional nanocargo in the treatment modalities in tumor microenvironment. Pharma Focus Asia [cited 2017 April]. Available from: https://www.pharmafocusasia.com/articles/multifunctional-nano-cargo-for-drug-delivery-to-tumor-cells.
  • Kausar H, Mujeeb M, Ahad A, et al. Optimization of ethosomes for topical thymoquinone delivery for the treatment of skin acne. J Drug Deliv Sci Tech. 2019;49:177–187.
  • Panda A, Meena J, Katara R, et al. Formulation and characterization of clozapine and risperidone co-entrapped spray-dried PLGA nanoparticles. Pharm Dev Tech. 2016;21(1):43–53.
  • Ahad A, Al-Saleh AA, Al-Mohizea AM, et al. Formulation and characterization of Phospholipon 90 G and tween 80 based transfersomes for transdermal delivery of eprosartan mesylate. Pharm Dev Technol. 2018;23(8):787–793.
  • Hoa LTM, Chi NT, Nguyen LH, et al. Preparation and characterisation of nanoparticles containing ketoprofen and acrylic polymers prepared by emulsion solvent evaporation method. J Exp Nanosci. 2012;7(2):189–197.
  • Bayrami S, Esmaili Z, Seyed Alinaghi S, et al. Fabrication of long-acting insulin formulation based on poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanoparticles: preparation, optimization, characterization, and in vitro evaluation. Pharm Dev Tech. 2019;24(2):176–188.
  • Shirmard LR, Javan NB, Khoshayand MR, et al. Nanoparticulate fingolimod delivery system based on biodegradable poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV): design, optimization, characterization and in-vitro evaluation. Pharm Dev Technol. 2017;22(7):860–870.
  • Sharma N, Madan P, Lin S. Effect of process and formulation variables on the preparation of parenteral paclitaxel-loaded biodegradable polymeric nanoparticles: a co-surfactant study. Asian J Pharm Sci. 2016;11(3):404–416.
  • Gan Q, Wang T. Chitosan nanoparticle as protein delivery carrier–systematic examination of fabrication conditions for efficient loading and release. Colloids Surf B Biointerfaces. 2007;59(1):24–34.
  • Krishnakumar N, Sulfikkarali N, RajendraPrasad N, et al. Enhanced anticancer activity of naringenin-loaded nanoparticles in human cervical (HeLa) cancer cells. Biomed Prev Nut. 2011;1(4):223–231.
  • Zeng X, Tao W, Tao W, et al. Cholic acid-functionalized nanoparticles of star-shaped PLGA-vitamin E TPGS copolymer for docetaxel delivery to cervical cancer. Biomaterials. 2013;34(25):6058–6067.
  • Zeng X, Liu G, Tao W, et al. A drug‐self‐gated mesoporous antitumor nanoplatform based on pH‐sensitive dynamic covalent bond. Adv Funct Mater. 2017;27:1605985.
  • Akhter MH, Ahmad A, Ali J, et al. Formulation and development of CoQ10 loaded s-SNEDDS for enhancement of oral bioavailability. J Pharm Innov. 2014;9(2):121–131.
  • Soni K, Mujtaba A, Akhter MH, et al. Optimisation of ethosomal nanogel for topical nano-CUR and sulphoraphane delivery in effective skin cancer therapy. J Microencap. 2020;37(2):91–108.
  • Limsuwan T, Boonme P, Khongkow P, et al. Ethosomes of phenylethyl resorcinol as vesicular delivery system for skin lightening applications. BioMed Res Int. 2017;2017:1–12.
  • Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems – a review (part 2). Trop J Pharm Res. 2013;12:265–273.
  • Ji P, Yu T, Liu Y, et al. Naringenin-loaded solid lipid nanoparticles: preparation, controlled delivery, cellular uptake, and pulmonary pharmacokinetics. Drug Design Dev Ther. 2016;10:911–925.
  • Ke W, Tingting L, Rong L, et al. Preparation and in vitro release of buccal tablets of naringenin-loaded MPEG-PCL nanoparticles. RSC Adv. 2914;4:33672–33679.
  • Jamil A, Mirza MA, Anwer MK, et al. Co-delivery of gemcitabine and simvastatin through PLGA polymeric nanoparticles for the treatment of pancreatic cancer: in-vitro characterization, cellular uptake, and pharmacokinetic studies. Drug Dev Ind Pharm. 2019;45(5):745–753.
  • Zeng X, Luo M, Liu G, et al. Polydopamine‐modified black phosphorous nanocapsule with enhanced stability and photothermal performance for tumor multimodal treatments. Adv Sci. 2018;5(10):1800510.
  • Chronopoulou L, Massimi M, Giardi MF, et al. Chitosan-coated PLGA nanoparticles: a sustained drug release strategy for cell cultures. Colloids Surf. B Biointerfaces. 2013;103:310–317.
  • Zhu H, Chen H, Zeng X, et al. Co-delivery of chemotherapeutic drugs with vitamin E TPGS by porous PLGA nanoparticles for enhanced chemotherapy against multi-drug resistance. Biomaterials. 2014;35(7):2391–2400.
  • Pandit J, Sultana Y, Aqil M. Chitosan-coated PLGA nanoparticles of bevacizumab as novel drug delivery to target retina: optimization, characterization, and in vitro toxicity evaluation. Artif Cells, Nanomed Biotechnol. 2017;45(7):1397–1407.
  • Parashar P, Rathor M, Dwivedi M, et al. Hyaluronic acid decorated naringenin nanoparticles: appraisal of chemopreventive and curative potential for lung cancer. Pharmaceutics. 2018;10(33): pii: E33.
  • Cheng W, Nie J, Gao N, et al. A multifunctional nanoplatform against multidrug resistant cancer: merging the best of targeted chemo/gene/photothermal therapy. Adv Funct Mater. 2017;27(45):1704135.
  • Mohamed EA, Hashim IIA, Yusif RM, et al. Polymeric micelles for potentiated antiulcer and anticancer activities of naringin. IJN. 2018;13:1009–1027.
  • Kumar SP, Birundha K, Kaveri K, et al. Antioxidant studies of chitosan nanoparticles containing naringenin and their cytotoxicity effects in lung cancer cells. Int J Biol Macromol. 2015;78:87–95.
  • Chaurasia S, Patel RR, Vure P, et al. Potential of cationic-polymeric nanoparticles for oral delivery of naringenin: in vitro and in vivo investigations. J Pharm Sci. 2018;107(2):706–716.
  • Mir IA, Tiku AB. Chemopreventive and therapeutic potential of “Naringenin,” a flavanone present in citrus fruits. Nutr Cancer. 2015;67(1):27–42.
  • Rajamani S, Radhakrishnan A, Sengodan T, et al. Augmented anticancer activity of naringenin-loaded TPGS polymeric nanosuspension for drug resistive MCF-7 human breast cancer cells. Drug Dev Ind Pharm. 2018;44(11):1752–1761.
  • Khan AW, Kotta S, Ansari SH, et al. Enhanced dissolution and bioavailability of grapefruit flavonoid naringenin by solid dispersion utilizing fourth generation carrier. Drug Dev Ind Pharm. 2015;41(5):772–779.
  • Galindo-Rodriguez S, Allémann E, Fessi H, et al. Physicochemical parameters associated with nanoparticle formation in the salting-out, emulsification-diffusion, and nanoprecipitation methods. Pharm Res. 2004;21(8):1428–1439.
  • Li T, Chen L, Deng Y, et al. Cholesterol derivative-based liposomes for gemcitabine delivery: preparation, in vitro, and in vivo characterization. Drug Dev Ind Pharm. 2017;43(12):2016–2025.
  • Akhter MH, Alam MS, Minhaj MA. Smart nano-enabled drug carrier in combating tumor development and progress. Pharma Focus Asia [cited 2018 September]. Available from: https://www.pharmafocusasia.com/articles/smart-nano-enabled-drug-carrier-in-combating-tumor-development
  • Rejinold NS, Muthunarayanan M, Chennazhi KP, et al. 5-Fluorouracil loaded fibrinogen nanoparticles for cancer drug delivery applications. Int J Biol Macromol. 2011;48(1):98–105.
  • Parveen S, Sahoo SK. Evaluation of cytotoxicity and mechanism of apoptosis of doxorubicin using folate-decorated chitosan nanoparticles for targeted delivery to retinoblastoma. Cancer Nano. 2010;1(1–6):47–62.
  • Kumar RP, Abraham A. PVP-coated naringenin nanoparticles for biomedical applications – in vivo toxicological evaluations. Chemico-Biolog Int. 2016;257:110–118.
  • Danhier F, Feron O, Preat V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Cont Rel. 2010;148(2):135–146.
  • Danhier F. To exploit the tumor microenvironment: since the EPR effect fails in the clinic, what is the future of nanomedicine?. J Cont Rel. 2016;244:108–121.
  • Daman Z, Faghihi H, Montazeri H. Salinomycin nanoparticles interfere with tumor cell growth and the tumor microenvironment in an orthotopic model of pancreatic cancer. Drug Dev Ind Pharm. 2018;44(9):1434–1442.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.