793
Views
27
CrossRef citations to date
0
Altmetric
Research Articles

Effect of different molecular weight PLGA on flurbiprofen nanoparticles: formulation, characterization, cytotoxicity, and in vivo anti-inflammatory effect by using HET-CAM assay

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 682-695 | Received 13 Nov 2019, Accepted 07 Apr 2020, Published online: 23 Apr 2020

References

  • Kumar C. Nanotechnology tools in pharmaceutical R&D. Mater Today. 2010;12(1):24–30.
  • Öztürk AA, Martin-Banderas L, Cayero-Otero MD, et al. Dexketoprofen trometamol-loaded Poly-Lactic-co-Glycolic Acid (PLGA) nanoparticles: preparation, in vitro characterization and cytotoxicity. Trop J Pharm Res. 2019;18(1):1–11.
  • Öztürk AA, Martin-Banderas L, Cayero Otero MD, et al. New approach to hypertension treatment: carvedilol-loaded plga nanoparticles, preparation, in vitro characterization and gastrointestinal stability. Latin Am J Pharm. 2018;37:1730.
  • Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (plga) as biodegradable controlled drug delivery carrier. Polymers. 2011;3(3):1377–1397.
  • Öztürk AA, Çinar Nİ, Yenilmez E. Development of nano-sized ketoprofen lysine incorporated Eudragit® S100 nanomedicine by double emulsion solvent evaporation and in vitro characterization. J Pharm Pharmacogn Res. 2019;7(1):47–58.
  • Öztürk AA, Güven UM, Yenilmez E, et al. Effects of different derivatives of eudragit polymer on entrapment efficiency, in vitro dissolution, release kinetics and cell viability results on extended release flurbiprofen loaded nanomedicines. Lat Am J Pharm. 2018;37(10):1981–1992.
  • Öztürk AA, Güven UM, Yenilmez E. Flurbiprofen loaded gel based topical delivery system: formulation and in vitro characterization with new developed UPLC method. Acta Pharm Sci. 2018;56(4):81–105.
  • Date AA, Hanes J, Ensign LM. Nanoparticles for oral delivery: design, evaluation and state-of-the-art. J Control Release. 2016;240:504–526.
  • Bürgermeister J, Paper DH, Vogl H, et al. LaPSvS1, a (1→3) β-galactan sulfate and its effect on angiogenesis in vivo and in vitro. Carbonhydr Res. 2002;337(16):1459–1466.
  • Krenn L, Paper DH. Inhibition of angiogenesis and inflammation by an extract of red clover (Trifolium pratense L.). Phytomedicine. 2009;16(12):1083–1088.
  • Janagam DR, Wu L, Lowe TL. Nanoparticles for drug delivery to the anterior segment of the eye. Adv Drug Deliv Rev. 2017;122:31–64.
  • Öztürk AA, Kıyan HT. Treatment of oxidative stress-induced pain and inflammation with dexketoprofen trometamol loaded different molecular weight chitosan nanoparticles: formulation, characterization and anti-inflammatory activity by using in vivo. Microvasc Res. 2020;128:103961.
  • Öztürk AA, Namlı İ, Güleç K, et al. Diclofenac sodium loaded PLGA nanoparticles for inflammatory diseases with high anti-inflammatory properties at low dose: formulation, characterization and in vivo HET-CAM analysis. Microvasc Res. 2020;130:103991. DOI:10.1016/j.mvr.2020.103991
  • Wilson TD, Steck WF. A modified HET-CAM assay approach to the assessment of anti-irritant properties of plant extracts. Food Chem Toxicol. 2000;38(10):867–872.
  • Kumar R, Sinha VR. Solid lipid nanoparticle: an efficient carrier for improved ocular permeation of voriconazole. Drug Dev Ind Pharm. 2016;42(12):1956–1967.
  • Ribatti D, Nico B, Vacca A, et al. Chorioallantoic membrane capillary bed: a useful target for studying angiogenesis and anti-angiogenesis in vivo. Anat Rec. 2001;264(4):317–324.
  • Zhang Y, Huo M, Zhou J, et al. DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. AAPS J. 2010;12(3):263–271.
  • Stockert JC, Blázquez-Castro A, Canete M, et al. MTT assay for cell viability: intracellular localization of the formazan product is in lipid droplets. Acta Histochem. 2012;114(8):785–796.
  • Uchida M, Li XW, Mertens P, et al. Transfection by particle bombardment: delivery of plasmid DNA into mammalian cells using gene gun. Biochim Biophys Acta. 2009;1790(8):754–764.
  • Seow L, Beh H, Sadikun A, et al. Evaluation of anti-inflammatory effect of traditional medicinal plants Gynura segetum. TANG. 2014;4:e4.
  • Kıyan HT. Bazı Hypericum türlerinin uçucu yağ bileşimleri ve antianjiyojenik aktiviteleri, Yüksek Lisans Tezi, Sağlık Bilimleri Enstitüsü, Farmakognozi Anabilim Dalı, Eskişehir, Turkey; 2010.
  • Mittal G, Sahana DK, Bhardwaj V, et al. Estradiol loaded PLGA nanoparticles for oral administration: effect of polymer molecular weight and copolymer composition on release behavior in vitro and in vivo. J Control Release. 2007;119(1):77–85.
  • Martín-Banderas L, Alvarez-Fuentes J, Durán-Lobato M, et al. Cannabinoid derivate-loaded PLGA nanocarriers for oral administration: formulation, characterization, and cytotoxicity studies. Int J Nanomed. 2012;7:5793–5806.
  • Palacio J, Orozco VH, López BL. Effect of the molecular weight on the physicochemical properties of poly(lactic acid) nanoparticles and on the amount of ovalbumin adsorption. J Braz Chem Soc. 2011;22(12):2304–2311.
  • Şenel B, Öztürk AA. New approaches to tumor therapy with siRNA-decorated and chitosan-modified PLGA nanoparticles. Drug Dev Ind Pharm. 2019;45(11):1835–1848.
  • Berrocoso E, Rey-Brea R, Fernandez-Arevalo M, et al. Single oral dose of cannabinoid derivate loaded PLGA nanocarriers relieves neuropathic pain for eleven days. Nanomedicine. 2017;13(8):2623–2632.
  • Emami J, Mohiti H, Hamishehkar H, et al. Formulation and optimization of solid lipid nanoparticle formulation for pulmonary delivery of budesonide using Taguchi and Box-Behnken design. Res Pharm Sci. 2015;10(1):17–33.
  • Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art. Eur J Pharm Biopharm. 2000;50(1):161–177.
  • Panyam J, Williams D, Dash A, et al. Solid-state solubility infuences encapsulation and release of hydrophobic drugs from PLGA/PLA nanoparticles. J Pharm Sci. 2004;93(7):1804–1814.
  • Huang W, Zhang C. Tuning the size of poly(lactic-co-glycolic acid) (PLGA) nanoparticles fabricated by nanoprecipitation. Biotechnol J. 2018;13(1):1–19.
  • Öztürk AA, Yenilmez E, Şenel B, et al. Dexketoprofen trometamol-loaded kollidon® SR and eudragit® RS 100 polymeric nanoparticles: formulation and in vitro-in vivo evaluation. J Res Pharm. 2020;24(1):1–2165.
  • de Azevedo CR, Stosch M, Costa MS, et al. Modeling of the burst release from PLGA micro- and nanoparticles as function of physicochemical parameters and formulation characteristics. Int J Pharm. 2017;532(1):229–240.
  • Huang X, Brazel CS. On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J Control Released. 2001;73(2–3):121–136.
  • Yang H, Li J, Patel SK, et al. Design of poly(lactic-co-glycolic Acid) (PLGA) nanoparticles for vaginal co-delivery of griffithsin and dapivirine and their synergistic effect for HIV prophylaxis. Pharmaceutics. 2019;11(4):184–121.
  • Öztürk AA, Yenilmez E, Özarda G. Clarithromycin-loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles for oral administration: effect of polymer molecular weight and surface modification with chitosan on formulation, nanoparticle characterization and antibacterial effects. Polymers. 2019;11(10):1632.
  • Sohail MF, Shah PA, Tariq I, et al. Development and in vitro evaluation of flurbiprofen microcapsules prepared by modified solvent evaporation technique. Trop J Pharm Res. 2014;13(7):1031–1038.
  • Öztürk AA, Aygül A, Şenel B. Influence of glyceryl behenate, tripalmitin and stearic acid on the properties of clarithromycin incorporated solid lipid nanoparticles (SLNs): formulation, characterization, antibacterial activity and cytotoxicity. J Drug Sci Technol. 2019;54:101240.
  • Vega E, Gamisans F, Garcia ML, et al. PLGA nanospheres for the ocular delivery of flurbiprofen: drug release and interactions. J Pharm Sci. 2008;97(12):5306–5317.
  • Gamisans F, Lacoulonche F, Chauvet A, et al. Flurbiprofen-loaded nanospheres: analysis of the matrix structure by thermal methods. Int J Pharm. 1999;179(1):37–48.
  • Öztürk AA, Yenilmez E, Yazan Y. Dexketoprofen trometamol-loaded Eudragit® RL 100 nanoparticle formulation, characterization and release kinetics. actapharm. 2019;57(1):69–84.
  • Nath N, Liu X, Jacobs L, et al. Flurbiprofen benzyl nitrate (NBS-242) inhibits the growth of A-431 human epidermoid carcinoma cells and targets β-catenin. Drug Des Devel Ther. 2013;7:389–396.
  • Chan DC, Gera L, Zhang Z, et al. Abstract 1941: development of novel NSAID conjugated molecules for lung cancer therapy. Cancer Res. 2012;72(8):1941–1941.
  • Amrite AC, Kompella UB. Celecoxib inhibits proliferation of retinal pigment epithelial and choroid-retinal endothelial cells by a cyclooxygenase-2-independent mechanism. J Pharmacol Exp Ther. 2008;324(2):749–758.
  • Cordewener FW, van Geffen MF, Joziasse CAP, et al. Cytotoxicity of poly(96L/4D-lactide): the influence of degradation and sterilization. Biomaterials. 2000;21(23):2433–2442.
  • Luo L, Li DQ, Pflugfelder SC. Hyperosmolarity-induced apoptosis in human corneal epithelial cells is mediated by cytochrome c and MAPK pathways. Cornea. 2007;26(4):452–460.
  • Lee JH, Kim M, Im YS, Choi W, et al. NFAT5 induction and its role in hyperosmolar stressed human limbal epithelial cells. Invest Ophthalmol Vis Sci. 2008;49(5):1827–1835.
  • Singh RP, Ramarao P. Accumulated polymer degradation products as effector molecules in cytotoxicity of polymeric nanoparticles. Toxicol Sci. 2013;136(1):131–143.
  • Morikawa Y, Tagami T, Hoshikawa A, et al. The use of an efficient microfluidic mixing system for generating stabilized polymeric nanoparticles for controlled drug release. Biol Pharm Bull. 2018;41(6):899–907.
  • Cegnar M, Premzl A, Zavasnik-Bergant V, et al. Poly(lactide-co-glycolide) nanoparticles as a carrier system for delivering cysteine protease inhibitor cystatin into tumor cells. Exp Cell Res. 2004;301(2):223–231.
  • Huang J, Zhang H, Yu Y, et al. Biodegradable self-assembled nanoparticles of poly (D,L-lactide-co-glycolide)/hyaluronic acid block copolymers for target delivery of docetaxel to breast cancer. Biomaterials. 2014;35(1):550–566.
  • Katsikari A, Patronidou C, Kiparissides C, et al. Uptake and cytotoxicity of poly(d,l-lactide-co-glycolide) nanoparticles in human colon adenocarcinoma cells. Mat Sci Eng B. 2009;165(3):160–164.
  • Sahoo SK, Panyam J, Prabha S, et al. Residual polyvinyl alcohol associated with poly (D,L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. J Control Release. 2002;82(1):105–114.
  • Aydin E, Badilli U, Onay-Besikci A, et al. Thermosensitive in situ gel formulation containing plga nanoparticles of flurbiprofen for ocular delivery. Acta Pol Pharm. 2018;75(1):141–153.
  • Mahasen AR, Aboul-Enein YH. In vitro release and stereoselective disposition of flurbiprofen loaded to poly(D,L-lactide- co-glycolide) nanoparticles in rats. Chirality. 2004;16(2):119–125.
  • Tariq M, Iqbal Z, Ali J, et al. Development and validation of a stability-indicating high-performance thin-layer chromatographic method for the simultaneous quantification of sparfloxacin and flurbiprofen in nanoparticulate formulation. JPC. 2014;27(2):124–131.
  • Schrage A, Gamer AO, Ravenzwaay B, et al. Experience with the HET-CAM method in the routine testing of a broad variety of chemicals and formulations. ATLA. 2010;38(1):39–52.
  • Steiling W, Bracher M, Courtellemont P, et al. The HET-CAM, a useful in vitro assay for assessing the eye irritation properties of cosmetic formulations and ingredients. Toxicol In Vitro. 1999;13(2):375–384.,
  • Ribatti D. The chick embryo chorioallantoic membrane (CAM). A multifaceted experimental model. Mech Dev. 2016;141:70–77.
  • Kue CS, Tan KY, Lam ML, et al. Chick embryo chorioallantoic membrane (CAM): an alternative predictive model in acute toxicological studies for anti-cancer drugs. Exp Anim. 2015;64(2):129–138.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.