162
Views
21
CrossRef citations to date
0
Altmetric
Research Articles

In vivo and in vitro biocompatibility study of MnFe2O4 and Cr2Fe6O12 as photosensitizer for photodynamic therapy and drug delivery of anti-cancer drugs

ORCID Icon, , ORCID Icon, ORCID Icon, & ORCID Icon
Pages 846-851 | Received 10 Mar 2020, Accepted 12 Apr 2020, Published online: 29 Apr 2020

References

  • Chen Y, Li G, Pandey RK. Synthesis of bacteriochlorins and their potential utility in photodynamic therapy (PDT). COC. 2004;8(12):1105–1134.
  • Huang P, Li Z, Lin J, et al. Photosensitizer-conjugated magnetic nanoparticles for in vivo simultaneous magnetofluorescent imaging and targeting therapy. Biomaterials. 2011;32(13):3447–3458.
  • Hamblin MR. Drug efflux pumps in photodynamic therapy. Drug efflux pumps in cancer resistance pathways: from molecular recognition and characterization to possible inhibition strategies in chemotherapy, Volume 7(Cancer Sensitizing Agents for Chemotherapy). Elsevier; 2020.
  • Castano AP, Demidova TN, Hamblin MR. Mechanisms in photodynamic therapy: part one—photosensitizers, photochemistry and cellular localization. Photodiagn Photodyn Ther. 2004;1(4):279–293.
  • Agostinis P, Berg K, Cengel KA, et al. Photodynamic therapy of cancer: an update. CA Cancer J Clin. 2011;61(4):250–281.
  • Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci. 2009;30(11):592–599.
  • Park JW. Liposome-based drug delivery in breast cancer treatment. Breast Cancer Res. 2002;4(3):95.
  • Aghajanzadeh M, Zamani M, Rostamizadeh K, et al. The role of miktoarm star copolymers in drug delivery systems. J Macromol Sci, Part A. 2018;55(7):559–571.
  • Kossatz S, Grandke J, Couleaud P, et al. Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery. Breast Cancer Res. 2015;17(1):66.
  • Cho K, Wang X, Nie S, et al. Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res. 2008;14(5):1310–1316.
  • Nasongkla N, Bey E, Ren J, et al. Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett. 2006;6(11):2427–2430.
  • Molavi H, Moghimi H, Taheri RA. Zr‐based MOFs with high drug loading for adsorption removal of anti‐cancer drugs: a potential drug storage. Appl Organometal Chem. 2020;34(4):e5549.
  • Cheng J, Tan G, Li W, et al. Preparation, characterization and in vitro photodynamic therapy of a pyropheophorbide-a-conjugated Fe 3 O 4 multifunctional magnetofluorescence photosensitizer. RSC Adv. 2016;6(44):37610–37620.
  • Chen F-H, Zhang L-M, Chen Q-T, et al. Synthesis of a novel magnetic drug delivery system composed of doxorubicin-conjugated Fe 3 O 4 nanoparticle cores and a PEG-functionalized porous silica shell. Chem Commun. 2010;46(45):8633–8635.
  • Dobson J. Magnetic nanoparticles for drug delivery. Drug Dev Res. 2006;67(1):55–60.
  • Qu Y, Li J, Ren J, et al. Enhanced magnetic fluid hyperthermia by micellar magnetic nanoclusters composed of Mn x Zn1–x Fe2O4 nanoparticles for induced tumor cell apoptosis. ACS Appl Mater Interfaces. 2014;6(19):16867–16879.
  • Pankhurst QA, Connolly J, Jones S, et al. Applications of magnetic nanoparticles in biomedicine. J Phys D: Appl Phys. 2003;36(13):R167–R181.
  • Kondo T, Mori K, Hachisu M, et al. Alternating current magnetic susceptibility and heat dissipation by Mn1− x Zn x Fe2O4 nanoparticles for hyperthermia treatment. J Appl Phys. 2015;117(17):17D157.
  • Naderi E, Aghajanzadeh M, Zamani M, et al. Improving the anti-cancer activity of quercetin-loaded AgFeO2 through UV irradiation: Synthesis, characterization, and in vivo and in vitro biocompatibility study. J Drug Delivery Sci Technol. 2020; 57:101645.
  • Gherca D, Pui A, Cornei N, et al. Synthesis, characterization and magnetic properties of MFe2O4 (M = Co, Mg, Mn, Ni) nanoparticles using ricin oil as capping agent. J Magn Magn Mater. 2012;324(22):3906–3911.
  • Pereira C, Pereira AM, Fernandes C, et al. Superparamagnetic MFe2O4 (M = Fe, Co, Mn) nanoparticles: tuning the particle size and magnetic properties through a novel one-step coprecipitation route. Chem Mater. 2012;24(8):1496–1504.
  • Sun S, Zeng H, Robinson DB, et al. Monodisperse mfe2o4 (m = fe, co, mn) nanoparticles. J Am Chem Soc. 2004;126(1):273–279.
  • Foroughi F, Hassanzadeh-Tabrizi S, Bigham A. In situ microemulsion synthesis of hydroxyapatite-MgFe2O4 nanocomposite as a magnetic drug delivery system. Mat Sci Eng: C. 2016;68:774–779.
  • Tarantash M, Nosrati H, Kheiri Manjili H, et al. Preparation, characterization and in vitro anticancer activity of paclitaxel conjugated magnetic nanoparticles. Drug Dev Ind Pharm. 2018;44(11):1895–1903.
  • Liu Y-L, Liu Z-M, Yang Y, et al. Simple synthesis of MgFe2O4 nanoparticles as gas sensing materials. Sens Actuators B Chem. 2005;107(2):600–604.
  • Kareem SH, Ati AA, Shamsuddin M, et al. Nanostructural, morphological and magnetic studies of PEG/Mn (1− x) Zn (x) Fe2O4 nanoparticles synthesized by co-precipitation. Ceram Int . 2015;41(9):11702–11709.
  • Montha W, Maneeprakorn W, Buatong N, et al. Synthesis of doxorubicin-PLGA loaded chitosan stabilized (Mn, Zn) Fe2O4 nanoparticles: biological activity and pH-responsive drug release. Mat Sci Eng: C. 2016; 59:235–240.
  • Ayubi M, Karimi M, Abdpour S, et al. Magnetic nanoparticles decorated with PEGylated curcumin as dual targeted drug delivery: synthesis, toxicity and biocompatibility study. Mat Sci Eng: C. 2019; 104:109810.
  • Naseri MG, Saion EB, Ahangar HA, et al. Synthesis and characterization of manganese ferrite nanoparticles by thermal treatment method. J Magn Magn Mater. 2011;323(13):1745–1749.
  • Zamani M, Naderi E, Aghajanzadeh M, et al. Co1− XZnxFe2O4 based nanocarriers for dual-targeted anticancer drug delivery: Synthesis, characterization and in vivo and in vitro biocompatibility study. J Mol Liq. 2019;274:60–67.
  • Zamani M, Aghajanzadeh M, Molavi H, et al. Thermally oxidized nanodiamond: an effective sorbent for separation of methotrexate from aqueous media: synthesis, characterization, in vivo and in vitro biocompatibility study. J Inorg Organomet Polym. 2019;29(3):701–709.
  • Botham PA. Acute systemic toxicity – prospects for tiered testing strategies. Toxicol in Vitro. 2004;18(2):227–230.
  • Xiao Y, Liang H, Wang Z. MnFe2O4/chitosan nanocomposites as a recyclable adsorbent for the removal of hexavalent chromium. Mater Res Bull. 2013;48(10):3910–3915.
  • Yang L, Zhang Y, Liu X, et al. The investigation of synergistic and competitive interaction between dye Congo red and methyl blue on magnetic MnFe2O4. Chem Eng J. 2014;246:88–96.
  • Chen J, Fan T, Xie Z, et al. Advances in nanomaterials for photodynamic therapy applications: status and challenges. Biomaterials. 2020; 237:119827.
  • OECD. 425: acute oral toxicity—up-and-down procedure. OECD guidelines for the testing of chemicals. 2001; 2:12–16.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.