2,407
Views
86
CrossRef citations to date
0
Altmetric
Review Article

Selective laser sintering 3D printing – an overview of the technology and pharmaceutical applications

, , , , , & show all
Pages 869-877 | Received 05 Mar 2020, Accepted 28 Apr 2020, Published online: 13 May 2020

References

  • FDA. Spritam (levetiracetam) tablets. 2015 [cited 2019 Oct 19]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2015/207958Orig1s000TOC.cfm.
  • Barakh Ali SF, Mohamed EM, Ozkan T, et al. Understanding the effects of formulation and process variables on the printlets quality manufactured by selective laser sintering 3D printing. Int J Pharm. 2019;570:118651.
  • Fina F, Goyanes A, Gaisford S, et al. Selective laser sintering (SLS) 3D printing of medicines. Int J Pharm. 2017;529(1–2):285–293.
  • Rahman Z, Barakh Ali SF, Ozkan T, et al. Additive manufacturing with 3D Printing: progress from bench to bedside. AAPS J. 2018; 20(6):101.
  • Water JJ, Bohr A, Boetker J, et al. Three-dimensional printing of drug-eluting implants: preparation of an antimicrobial polylactide feedstock material. J. Pharm. Sci. 2015;104(3):1099–1107.
  • Alhnan MA, Okwuosa TC, Sadia M, et al. Emergence of 3D printed dosage forms: opportunities and challenges. Pharm Res. 2016;33(8):1817–1832.
  • Inzana JA, Trombetta RP, Schwarz EM, Kates SL, Awad HA. 3D printed bioceramics for dual antibiotic delivery to treat implant-associated bone infection. Eur Cell Mater. 2015; 30:232–247.
  • Awad A, Fina F, Trenfield SJ, et al. 3D printed pellets (Miniprintlets): a novel multi-drug controlled release platform technology. Pharmaceutics. 2019;11(4):148.
  • Allahham N, Fina F, Marcuta C, et al. Selective laser sintering 3D printing of orally disintegrating printlets containing ondansetron. Pharmaceutics. 2020;12(2):110.
  • Fina F, Madla CM, Goyanes A, et al. Fabricating 3D printed orally disintegrating printlets using selective laser sintering. Int J Pharm. 2018;541(1–2):101–107.,
  • Zhang H, LeBlanc S. Processing parameters for selective laser sintering or melting of oxide ceramics. In: Shishkovsky Igor V, editor. Additive manufacturing of high-performance metals and alloys - modeling and optimization. London, UK: IntechOpen; 2018 [cited 2019 Oct 19]. p. 89–124. Available from: https://www.intechopen.com/books/additive-manufacturing-of-high-performance-metals-and-alloys-modeling-and-optimization/processing-parameters-for-selective-laser-sintering-or-melting-of-oxide-ceramics.
  • Ligon SC, Liska R, Stampfl J, et al. Polymers for 3D printing and customized additive manufacturing. Chem Rev. 2017;117(15):10212–10290.
  • Akilesh M, Elango PR, Devanand AA, et al. Optimization of selective laser sintering process parameters on surface quality. In: Kumar L. Pandey P. Wimpenny D, editors. 3D printing and additive manufacturing technologies. Singapore: Springer; 2019. p. 141–157.
  • Raghunath N, Pandey PM. Improving accuracy through shrinkage modelling by using Taguchi method in selective laser sintering. Int. J. Mach. Tools Manuf. 2007;47(6):985–995.
  • Schmid M, Amado A, Wegener K. Polymer powders for selective laser sintering (SLS). AIP Conf. Proc. 2015;1664(1):160009.
  • Kalyana C, Pingali KS, Reza F, et al. Practical methods for improving flow properties of active pharmaceutical ingredients. Drug Dev Ind Pharm. 2009;35:12.
  • Goodridge R, Ziegelmeier S. Powder bed fusion of polymers. In: Brandt M, editor. Woodhead Publishing Series in Electronic and Optical Materials Laser Additive Manufacturing. Cambridage, UK: Woodhead Publishing; 2017. p. 181–204.
  • Trenfield SJ, Goyanes A, Richard T, et al. 3D printed drug products: non-destructive dose verification using a rapid point-and-shoot approach. Int J Pharm. 2018;549:238–292.
  • Trenfield SJ, Tan HX, Goyanes A, Wilsdon D, et al. Non-destructive dose verification of two drugs within 3D printed polyprintlets. Int J Pharm. 2020;577:119066.
  • Fina F, Goyanes A, Madla CM, et al. 3D printing of drug-loaded gyroid lattices using selective laser sintering. Int J Pharm. 2018;547(1–2):44–52.
  • Caulfield B, McHugh PE, Lohfeld S. Dependence of mechanical properties of polyamide components on build parameters in the SLS process. J Mater Process Technol. 2007;182(1–3):477–488.
  • Charoo NA. Critical excipient attributes relevant to solid dosage formulation manufacturing. J Pharm Innov. 2020;15(1):119–163.
  • Leu M, Pattnaik S, Hilmas G. Optimization of selective laser sintering process for fabrication of zirconium diboride parts. Proceedings of the 21st Annual International Solid Freeform Fabrication Symposium; 2010. p. 493–503.
  • Salmoria G, Vieira E, Ghizoni F, et al. 3D printing of PCL/Fluorouracil tablets by selective laser sintering: properties of implantable drug delivery for cartilage cancer treatment. Rheumatol Orthop Med. 2017;2(3):1–7.
  • Speranza V, Sorrentino A, De Santis F, et al. Characterization of the polycaprolactone melt crystallization: complementary optical microscopy, DSC, and AFM studies. ScientificWorldJournal. 2014;2014:1–9.
  • Antonov EN, Bagratashvili VN, Whitaker MJ, et al. Three-dimensional bioactive and biodegradable scaffolds fabricated by surface-selective laser sintering. Adv Mater. 2005;17(3):327–330.
  • Duan B, Wang M. Customized Ca-P/PHBV nanocomposite scaffolds for bone tissue engineering: design fabrication surface modification and sustained release of growth factor. J R Soc Interface. 2010;7 (Suppl 5):S615–S629.
  • FDA inactive ingredient database - using the inactive ingredient database guidance for industry. [cited 2019 Dec 01]. https://www.fda.gov/media/128687/download.
  • FDA - Generally Recognized as Safe (GRAS). [cited 2019 Dec 01]. https://www.fda.gov/food/food-ingredients-packaging/generally-recognized-safe-gras.
  • Lippits DR, Rastogi S, Höhne GWH. Melting kinetics in polymers. Phys Rev Lett. 2006;96(21):1–4.
  • Sarode AL, Sandhu H, Shah N, et al. Hot melt extrusion (HME) for amorphous solid dispersions: predictive tools for processing and impact of drug–polymer interactions on supersaturation. Eur J Pharm Sci. 2013;48(3):371–384.
  • Holländer J, Genina N, Jukarainen H, et al. Three-dimensional printed PCl-based implantable prototypes of medical devices for controlled drug delivery. J Pharm Sci. 2016;494:657–663.
  • Muwaffak Z, Goyanes A, Clark V, et al. Patient-specific 3D scanned and 3D printed antimicrobial polycaprolactone wound dressings. Int J Pharm. 2017;527(1-2):161–170.
  • Van Bael S. Ontwerp en productie van botscaffolds via selectief laser sinteren/smelten Master Thesis Groep T Engineering School Belgium; 2006.
  • Vandenbroucke B. Selective laser melting of biocompatible metals for rapid manufacturing of medical parts [PhD thesis]. K.U. Leuven Division PMA; 2008.
  • Williams JM, Adewunmi A, Schek RM, et al. Bone tissue engineering using PCL scaffolds fabricated via SLS. Biomaterials. 2005;26(23):4817–4827.
  • Tao O, Kort-Mascort J, Lin Y, et al. The applications of 3D printing for craniofacial tissue engineering. Micromachines. 2019;10(7):480.
  • Ritz U, Gerke R, Götz H, et al. A new bone substitute developed from 3D-prints of polylactide (PLA) loaded with collagen I: an in vitro study. IJMS. 2017;18(12):2569.
  • Park J-B, Lee BJ, Kang CY, et al. Process analytical quality control of tailored drug release formulation prepared via hot-melt extrusion technology. J Drug Deliv Sci Technol. 2017;38:51–58.
  • Chen P, Tang M, Zhu W, et al. Systematical mechanism of polyamide-12 aging and its micro-structural evolution during laser sintering. Polym Test. 2018;67:370–379.
  • Pham DT, Dotchev KD, Yusoff W. Deterioration of polyamide powder properties in the laser sintering process. Proc Inst Mech Eng Part C J Mech Eng Sci. 2008;222(11):2163–2176.
  • Gardner MR, Lewis A, Park J, et al. In situ process monitoring in selective laser sintering using optical coherence tomography. Opt Eng. 2018;57(04):1.
  • Lizarrag E, Zabaleta C, Palop JA. Thermal stability and decomposition of pharmaceutical compounds. J Therm Anal Calorim. 2007;89(3):783–792.
  • Dotchev K, Yusoff W. Recycling of polyamide 12 based powders in the laser sintering process. Rapid Prototyp J. 2009;15(3):192–203.
  • Feng L, Wang Y, Wei Q. PA12 powder recycled from SLS for FDM. Polymers. 2019;11(4):727.
  • Kruth JP, Duflou J, Mercelis P, et al. On-line monitoring and process control in selective laser melting and laser cutting. Proceedings of the 5th Lane Conference Laser Assisted Net Shape Engineering; Erlangen, Germany; 25–28 September 2007. Vol. 1, p. 23–37.
  • Reiff C, Frederik W, Oliver R, et al. On inline process control for selective laser sintering. Proceedings of 8th International Conference on Mass Customization and Personalization – Community of Europe (MCP-CE 2018); Novi Sad, Serbia; 19–21 September 2018.
  • Vakili H, Kolakovic R, Genina N, et al. Hyperspectral imaging in quality control of inkjet printed personalised dosage forms. Int J Pharm. 2015;483(1–2):244–249.
  • Berumen S, Bechmann F, Lindner S, et al. Quality control of laser- and powder bed-based additive manufacturing (AM) technologies. Phys Procedia. 2010;5:617–622.
  • Oyar P. Laser sintering technology and balling phenomenon. Photomed Laser Surg. 2018;36(2):72–77.
  • Ly HB, Monteiro E, Le TT, et al. Prediction and sensitivity analysis of bubble dissolution time in 3D selective laser sintering using ensemble decision trees. Materials (Basel). 2019;12(9):1544.
  • Zhang B, Li Y, Bai Q. Defect formation mechanisms in selective laser melting: a review. Chin J Mech Eng. 2017;30(3):515–527.
  • Choo H, Sham KL, Bohling J, et al. Effect of laser power on defect texture and microstructure of a laser powder bed fusion processed 316L stainless steel. Mater Design. 2019;164:107534.
  • Wang RJ, Wang L, Zhao L, et al. Influence of process parameters on part shrinkage in SLS. Int J Adv Manuf Technol. 2007;33(5–6):498–504.
  • Norman J, Madurawe RD, Moore CM, et al. new chapter in pharmaceutical manufacturing: 3D-printed drug products. Adv Drug Deliv Rev. 2017;108:39–50.
  • -Zou Y, Han Q, Weng X, et al. The precision and reliability evaluation of 3-dimensional printed damaged bone and prosthesis models by stereo lithography appearance. Medicine (Baltimore). 2018;97(6):e9797.
  • Malekipour E, El-Mounayri H. Common defects and contributing parameters in powder bed fusion AM process and their classification for online monitoring and control: a review. Int J Adv Manuf Technol. 2018;95(1–4):527–550.
  • Technical considerations for additive manufactured medical devices. Available from: https://www.fda.gov/files/medical%20devices/published/Technical-Considerations-for-Additive-Manufactured-Medical-Devices—Guidance-for-Industry-and-Food-and-Drug-Administration-Staff.pdf.
  • Awad A, Yao A, Trenfield SJ, et al. 3D printed tablets (Printlets) with braille and moon patterns for visually impaired patients. Pharmaceutics. 2020;12(2):172.
  • Ali AA, Charoo NA, Abdallah DB. Pediatric drug development: formulation considerations. Drug Dev Ind Pharm. 2014;40(10):1283–1299.
  • Khaled SA, Burley JC, Alexander MR, et al. 3D printing of five-in-one dose combination polypill with defined immediate and sustained release profiles. J Control Release. 2015;217:308–314.
  • Khaled SA, Burley JC, Alexander MR, et al. 3D printing of tablets containing multiple drugs with defined release profiles. Int J Pharm. 2015;494(2):643–650.
  • Charlesworth CJ, Smit E, Lee DS, et al. Polypharmacy among adults aged 65 years and older in the United States: 1988-2010. GERONA. 2015;70(8):989–995.
  • Gellad WF, Grenard JL, Marcum ZA. A systematic review of barriers to medication adherence in the elderly: looking beyond cost and regimen complexity. Am J Geriatr Pharmacother. 2011;9(1):11–23.
  • Cutler RL, Fernandez-Llimos F, Frommer M, et al. Economic impact of medication non-adherence by disease groups: a systematic review. BMJ Open. 2018;8(1):e016982.
  • Rahman Z, Bykadi S, Siddiqui A, et al. Comparison of X-ray powder diffraction and solid-state nuclear magnetic resonance in estimating crystalline fraction of tacrolimus in sustained-release amorphous solid dispersion and development of discriminating dissolution method. J Pharm Sci. 2015;104(5):1777–1786.
  • Siddiqui A, Rahman Z, Korang-Yeboah M, et al. Development and validation of X-ray diffraction method for quantitative determination of crystallinity in warfarin sodium products. Int J Pharm. 2015;493(1–2):1–6.
  • Leong KF, Wiria FE, Chua CK, et al. Characterization of a poly-ε-caprolactone polymeric drug delivery device built by selective laser sintering. Biomed Mater Eng. 2007;3(1):1–157.
  • FDA. Abuse-Deterrent Opioid Analgesics. 2019 [cited 2019 Oct 19]. Available from: https://www.fda.gov/drugs/postmarket-drug-safety-information-patients-and-providers/abuse-deterrent-opioid-analgesics.
  • Rahman Z, Zidan AS, Korang-Yeboah M, et al. Effects of excipients and curing process on the abuse deterrent properties of directly compressed tablets. Int J Pharm. 2017;517(1–2):303–311.
  • Xu X, Siddiqui A, Srinivasan C, et al. Evaluation of abuse-deterrent characteristics of tablets prepared via hot-melt extrusion. AAPS PharmSciTech. 2019;20(6):230.
  • Rahman Z, Yang Y, Korang-Yeboah M, et al. Assessing impact of formulation and process variables on in-vitro performance of directly compressed abuse deterrent formulations. Int J Pharm. 2016;502(1–2):138–150.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.