449
Views
12
CrossRef citations to date
0
Altmetric
Research Articles

Development of probiotic orodispersible tablets using mucoadhesive polymers for buccal mucoadhesion

ORCID Icon, & ORCID Icon
Pages 1753-1762 | Received 26 Jun 2020, Accepted 28 Sep 2020, Published online: 30 Oct 2020

References

  • Näse L, Hatakka K, Savilahti E, et al. Effect of long-term consumption of a probiotic bacterium, Lactobacillus rhamnosus GG, in milk on dental caries and caries risk in children. Caries Res. 2001;35(6):412–420.
  • Simark-Mattsson C, Emilson C-G, Hakansson EG, et al. Lactobacillus-mediated interference of mutans streptococci in caries-free vs. caries-active subjects. Eur J Oral Sci. 2007;115(4):308–314.
  • Krasse P, Carlsson B, Dahl C, et al. Decreased gum bleeding and reduced gingivitis by the probiotic Lactobacillus reuteri. Swed Dent J. 2005;30:55–60.
  • Iwasaki K, Maeda K, Hidaka K, et al. Daily intake of heat-killed Lactobacillus plantarum L-137 decreases the probing depth in patients undergoing supportive periodontal therapy. Oral Health Prev Dent. 2016;14:207–214.
  • Vuotto C, Barbanti F, Mastrantonio P, et al. Lactobacillus brevis CD2 inhibits Prevotella melaninogenica biofilm. Oral Dis. 2014;20(7):668–674.
  • İnce G, Gürsoy H, İpçi ŞD, et al. Clinical and biochemical evaluation of lozenges containing Lactobacillus reuteri as an adjunct to non-surgical periodontal therapy in chronic periodontitis. J Periodontol. 2015;86(6):746–754.
  • Allhenn D. Innovative Arzneiformen: Ein Lehrbuch fuer Studium und Praxis; mit 59 Tabellen. Stuttgart: Wiss. Verl.-Ges.; 2010.
  • Hoffmann A, Daniels R. Ultra-fast disintegrating ODTs comprising viable probiotic bacteria and HPMC as a mucoadhesive. Eur J Pharm Biopharm. 2019;139:240–245.
  • Sudhakar Y, Kuotsu K, Bandyopadhyay AK. Buccal bioadhesive drug delivery - a promising option for orally less efficient drugs. J Control Release. 2006;114(1):15–40.
  • Woertz C, Preis M, Breitkreutz J, et al. Assessment of test methods evaluating mucoadhesive polymers and dosage forms: an overview. Eur J Pharm Biopharm. 2013;85(3 Pt B):843–853.
  • Harding SE, Davis SS, Deacon MP, et al. Biopolymer mucoadhesives. Biotechnol Genet Eng Rev. 1999;16:41–86.
  • Shahiwala A. Applications of polymers in buccal drug delivery. In: Applications of Polymers in Drug Delivery. 2014. p. 59–96.
  • Park K, Robinson JR. Bioadhesive polymers as platforms for oral-controlled drug delivery: method to study bioadhesion. Int J Pharm. 1984;19(2):107–127.
  • Ahuja A, Khar RK, Ali J. Mucoadhesive drug delivery systems. Drug Dev Ind Pharm. 1997;23(5):489–515.
  • Huang Y, Leobandung W, Foss A, et al. Molecular aspects of muco- and bioadhesion: tethered structures and site-specific surfaces. J Control Release. 2000;65(1-2):63–71.
  • Jiménez-Castellanos MR, Zia H, Rhodes CT. Mucoadhesive drug delivery systems. Drug Dev Ind Pharm. 1993;19(1-2):143–194.
  • Kerec M, Bogataj M, Mugerle B, et al. Mucoadhesion on pig vesical mucosa: influence of polycarbophil/calcium interactions. Int J Pharm. 2002;241(1):135–143.
  • Salamat-Miller N, Chittchang M, Johnston TP. The use of mucoadhesive polymers in buccal drug delivery. Adv Drug Deliv Rev. 2005;57(11):1666–1691.
  • He P, Davis SS, Illum L. In vitro evaluation of the mucoadhesive properties of chitosan microspheres. Int J Pharm. 1998;166(1):75–88.
  • Bernkop-Schnuerch A. Mucoadhesive systems in oral drug delivery. Drug Discov Today Technol. 2005;2:83–87.
  • Meng-Lund E, Muff-Westergaard C, Sander C, et al. A mechanistic based approach for enhancing buccal mucoadhesion of chitosan. Int J Pharm. 2014;461(1-2):280–285.
  • van der Merwe SM, Verhoef JC, Verheijden JHM, et al. Trimethylated chitosan as polymeric absorption enhancer for improved peroral delivery of peptide drugs. Eur J Pharm Biopharm. 2004;58(2):225–235.
  • Russo E, Selmin F, Baldassari S, et al. A focus on mucoadhesive polymers and their application in buccal dosage forms. J Drug Deliv Sci Technol. 2016;32:113–125.
  • Hassan EE, Gallo JM. A simple rheological method for the in vitro assessment of mucin-polymer bioadhesive bond strength. Pharm Res. 1990;7(5):491–495.
  • Schmidt PC, Lang S. Pharmazeutische Hilfsstoffe: Eigenschaften, Anwendung und Handelsprodukte. Eschborn: Govi-Verl; 2013.
  • Park H, Robinson JR. Mechanisms of mucoadhesion of poly(acrylic acid) hydrogels. Pharm Res. 1987;4(6):457–464.
  • Andrews GP, Laverty TP, Jones DS. Mucoadhesive polymeric platforms for controlled drug delivery. Eur J Pharm Biopharm. 2009;71(3):505–518.
  • Lubrizol Pharmaceutical Bulletin 1. Polymers for Pharmaceutical Applications [Internet]. 2020 [cited 2020 Oct 1]. Available from: https://www.lubrizol.com/-/media/Lubrizol/Life-Sciences/Documents/Literature/Bulletin-01---Polymers-for-Pharmaceutical-Applications.pdf
  • Khutoryanskiy VV. Advances in mucoadhesion and mucoadhesive polymers. Macromol Biosci. 2011;11(6):748–764.
  • Ahrne S, Nobaek S, Jeppsson B, et al. The normal Lactobacillus flora of healthy human rectal and oral mucosa. J Appl Microbiol. 1998;85(1):88–94.
  • Leroy F, Vuyst L. d. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends in Food Science & Technology. 2004;15(2):67–78.
  • Stiles ME. Biopreservation by lactic acid bacteria. Antonie Van Leeuwenhoek. 1996;70(2-4):331–345.
  • Seddik HA, Bendali F, Gancel F, et al. Lactobacillus plantarum and its probiotic and food potentialities. Probiotics Antimicro Prot. 2017;9:111–122.
  • Vorländer K, Kampen I, Finke JH, et al. Along the process chain to probiotic tablets: evaluation of mechanical impacts on microbial viability. Pharmaceutics. 2020;12(1):66.
  • Muller C, Mazel V, Dausset C, et al. Study of the Lactobacillus rhamnosus Lcr35® properties after compression and proposition of a model to predict tablet stability. Eur J Pharm Biopharm. 2014;88(3):787–794.
  • Abe F, Miyauchi H, Uchijima A, et al. Effects of storage temperature and water activity on the survival of bifidobacteria in powder form. Int J Dairy Technol. 2009;62(2):234–239.
  • Fenster K, Freeburg B, Hollard C, et al. The production and delivery of probiotics: a review of a practical approach. Microorganisms. 2019;7(3):83.
  • van der Mei HC, van de Belt-Gritter B, Pouwels PH, et al. Cell surface hydrophobicity is conveyed by S-layer proteins-a study in recombinant lactobacilli. Colloids Surf B Biointerfaces. 2003;28(2-3):127–134.
  • Roescheisen G. Optimierung von Schmiermitteln fuer Brausetabletten [Dissertation]. Tuebingen: Eberhard-Karls-Universitaet; 1994.
  • Hoffmann A, Daniels R. A novel test system for the evaluation of oral mucoadhesion of fast disintegrating tablets. Int J Pharm. 2018;551(1-2):141–147.
  • Goel H, Vora N, Tiwary AK, et al. Understanding the mechanism for paradoxical effect of ionized and unionized chitosan: Orodispersible tablets of Ondansetron Hydrochloride. Pharm Dev Technol. 2009;14(5):476–484.
  • Chen S, Liu M, Jin S, et al. Synthesis and swelling properties of pH-sensitive hydrogels based on chitosan and poly(methacrylic acid) semi-interpenetrating polymer network. J Appl Polym Sci. 2005;98(4):1720–1726.
  • Tripathi MK, Giri SK. Probiotic functional foods: survival of probiotics during processing and storage. J Funct Foods. 2014;9:225–241.
  • Vesterlund S, Salminen K, Salminen S. Water activity in dry foods containing live probiotic bacteria should be carefully considered: a case study with Lactobacillus rhamnosus GG in flaxseed. Int J Food Microbiol. 2012;157(2):319–321.
  • Castro HP, Teixeira PM, Kirby R. Storage of lyophilized cultures of Lactobacillus bulgaricus under different relative humidities and atmospheres. Appl Microbiol Biotechnol. 1995;44(1-2):172–176.
  • Szymańska E, Winnicka K. Stability of chitosan-a challenge for pharmaceutical and biomedical applications. Mar Drugs. 2015;13(4):1819–1846.
  • Morris GA, Castile J, Smith A, et al. The kinetics of chitosan depolymerisation at different temperatures. Polym Degrad Stab. 2009;94(9):1344–1348.
  • No HK, Prinyawiwatkul W. Stability of chitosan powder during long-term storage at room temperature. J Agric Food Chem. 2009;57(18):8434–8438.
  • Shin-Etsu Chemical Co. L. Metolose: Water-soluble Cellulose Ehters [Internet]. 2020 [cited 2020 Oct 1]. Available from: https://www.metolose.jp/en/pharmaceutical/metolose.html
  • Gustafsson C, Nyström C, Lennholm H, et al. Characteristics of hydroxypropyl methylcellulose influencing compactibility and prediction of particle and tablet properties by infrared spectroscopy. J Pharm Sci. 2003;92(3):494–504.
  • Silva SMC, Pinto FV, Antunes FE, et al. Aggregation and gelation in hydroxypropylmethyl cellulose aqueous solutions. J Colloid Interface Sci. 2008;327(2):333–340.
  • Gustafsson C, Bonferoni MC, Caramella C, et al. Characterisation of particle properties and compaction behaviour of hydroxypropyl methylcellulose with different degrees of methoxy/hydroxypropyl substitution. Eur J Pharm Sci. 1999;9(2):171–184.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.