156
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Optimized preparation of eugenol microcapsules and its effect on hepatic steatosis in HepG2 cells

ORCID Icon, , , & ORCID Icon
Pages 225-234 | Received 23 Sep 2020, Accepted 08 Dec 2020, Published online: 28 Dec 2020

References

  • Dorman HJ, Deans SG. Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol. 2000;88(2):308–316.
  • Prabuseenivasan S, Jayakumar M, Ignacimuthu S. In vitro antibacterial activity of some plant essential oils. BMC Complement Altern Med. 2006;6:39–46.
  • Chatterjee D, Bhattacharjee P. Comparative evaluation of the antioxidant efficacy of encapsulated and un-encapsulated eugenol-rich clove extracts in soybean oil: shelf-life and frying stability of soybean oil. J Food Eng. 2013;117(4):545–550.
  • Devi KP, Nisha SA, Sakthivel R, et al. Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. J Ethnopharmacol. 2010;130(1):107–115.
  • Kamatou GP, Vermaak I, Viljoen AM. Eugenol-from the remote Maluku Islands to the international market place: a review of a remarkable and versatile molecule. Molecules. 2012;17(6):6953–6981.
  • Ogata M, Hoshi M, Urano S, et al. Antioxidant activity of eugenol and related monomeric and dimeric compounds. Chem Pharm Bull. 2000;48(10):1467–1469.
  • Hu Q, Zhou M, Wei S. Progress on the antimicrobial activity research of clove oil and eugenol in the food antisepsis field. J Food Sci. 2018;83(6):1476–1483.
  • Pramod K, Ansari SH, Ali J. Eugenol: a natural compound with versatile pharmacological actions. Nat Prod Commun. 2010;5(12):1999–2006.
  • Joshi RK. Chemical composition, in vitro antimicrobial and antioxidant activities of the essential oils of Ocimum gratissimum, O. sanctum and their major constituents. Indian J Pharm Sci. 2013;75(4):457–462.
  • Xu JS, Li Y, Cao X, et al. The effect of eugenol on the cariogenic properties of Streptococcus mutans and dental caries development in rats. Exp Ther Med. 2013;5(6):1667–1670.
  • Suzuki ÉY, Baptista EB, Resende Do Carmo AM, et al. Potential of the essential oil from Pimenta pseudocaryophyllus as an antimicrobial agent. Acta Pharm. 2014;64(3):379–385.
  • Moon SE, Kim HY, Cha JD. Synergistic effect between clove oil and its major compounds and antibiotics against oral bacteria. Arch Oral Biol. 2011;56(9):907–916.
  • Zhang Y, Wang Y, Zhu X, et al. Antibacterial and antibiofilm activities of eugenol from essential oil of Syzygium aromaticum (L.) Merr. & L. M. Perry (clove) leaf against periodontal pathogen Porphyromonas gingivalis. Microb Pathog. 2017;113:396–402.
  • Khalil AA, Rahman U, Khan MR, et al. Essential oil eugenol: sources, extraction techniques and nutraceutical perspectives. RSC Adv. 2017;7(52):32669–32681.
  • Marchese A, Barbieri R, Coppo E, et al. Antimicrobial activity of eugenol and essential oils containing eugenol: a mechanistic viewpoint. Crit Rev Microbiol. 2017;43(6):668–689.
  • Kalemba D, Kunicka A. Antibacterial and antifungal properties of essential oils. Curr Med Chem. 2003;10(10):813–829.
  • Hill LE, Gomes C, Taylor TM. Characterization of beta-cyclodextrin inclusion complexes containing essential oils (trans-cinnamaldehyde, eugenol, cinnamon bark, and clove bud extracts) for antimicrobial delivery applications. LWT Food Sci Technol. 2013;51(1):86–93.
  • Li D, Wu H, Dou H. Weight loss effect of sweet orange essential oil microcapsules on obese SD rats induced by high-fat diet. Biosci Biotechnol Biochem. 2019;83(5):923–932.
  • Faidi A, Lassoued MA, Becheikh MEH, et al. Application of sodium alginate extracted from a Tunisian brown algae Padina pavonica for essential oil encapsulation: microspheres preparation, characterization and in vitro release study. Int J Biol Macromol. 2019;136:386–394.
  • Tomazelli Júnior O, Kuhn F, Padilha PJM, et al. Microencapsulation of essential thyme oil by spray drying and its antimicrobial evaluation against Vibrio alginolyticus and Vibrio parahaemolyticus. Braz J Biol. 2018;78(2):311–317.
  • Fernandes RV, Borges SV, Botrel DA. Gum arabic/starch/maltodextrin/inulin as wall materials on the microencapsulation of rosemary essential oil. Carbohydr Polym. 2014;101:524–532.
  • Wang F, Zhao L, Li G, et al. Identification and characterization of Botryosphaeria spp. causing gummosis of peach trees in Hubei Province, Central China. Plant Dis. 2011;95(11):1378–1384.
  • Gao L, Wang Y, Li Z, et al. Gene expression changes during the gummosis development of peach shoots in response to Lasiodiplodia theobromae infection using RNA-Seq. Front Physiol. 2016;7:170.
  • Qian HF, Cui SW, Wang Q, et al. Fractionation and physicochemical characterization of peach gum polysaccharides. Food Hydrocoll. 2011;25(5):1285–1290.
  • Simas FF, Gorin PAJ, Wagner R, et al. Comparison of structure of gum exudate polysaccharides from the trunk and fruit of the peach tree (Prunus persica). Carbohydr Polym. 2008;71(2):218–228.
  • Yao XC, Cao Y, Wu SJ. Antioxidant activity and antibacterial activity of peach gum derived oligosaccharides. Int J Biol Macromol. 2013;62:1–3.
  • Wu S, Lu M, Wang S. Hypoglycaemic and hypolipidaemic properties of peach gum polysaccharides. 3 Biotech. 2017;7(3):166.
  • Mclean Ross AH, Eastwood MA, Brydon WG, et al. A study of the effects of dietary gum arabic in the rat. Br J Nutr. 1984;51(1):47–56.
  • Wei C, Zhang Y, He L, et al. Structural characterization and anti-proliferative activities of partially degraded polysaccharides from peach gum. Carbohydr Polym. 2019;203:193–202.
  • Porto BC, Cristianini M. Evaluation of cashew tree gum (Anacardium occidentale L.) emulsifying properties. LWT Food Sci Technol. 2014;59(2):1325–1331.
  • Huang J, Zhou L. Peach gum polysaccharide polyelectrolyte: preparation, properties and application in layer-by-layer self-assembly. Carbohydr Polym. 2014;113:373–379.
  • Li C, Tao J, Zhang H. Peach gum polysaccharides-based edible coatings extend shelf life of cherry tomatoes. 3 Biotech. 2017;7(3):168.
  • Jo HK, Kim GW, Jeong KJ, et al. Eugenol ameliorates hepatic steatosis and fibrosis by down-regulating SREBP1 gene expression via AMPK-mTOR-p70S6K signaling pathway. Biol Pharm Bull. 2014;37(8):1341–1351.
  • Sayiner M, Koenig A, Henry L, et al. Epidemiology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis in the United States and the rest of the world. Clin Liver Dis. 2016;20(2):205–214.
  • Cole BK, Feaver RE, Wamhoff BR, et al. Non-alcoholic fatty liver disease (NAFLD) models in drug discovery. Expert Opin Drug Discov. 2018;13(2):193–205.
  • Jeong HS, Cho YH, Kim KH, et al. Anti-lipoapoptotic effects of Alisma orientalis extract on non-esterified fatty acid-induced HepG2 cells. BMC Complement Altern Med. 2016;16:239.
  • Mishra PR, Al Shaal L, Müller RH, et al. Production and characterization of Hesperetin nanosuspensions for dermal delivery. Int J Pharm. 2009;371(1-2):182–189.
  • Carrasco H, Raimondi M, Svetaz L, et al. Antifungal activity of eugenol analogues. Influence of different substituents and studies on mechanism of action. Molecules. 2012;17(1):1002–1024.
  • Mazzarrino G, Paparella A, Chaves-López C, et al. Salmonella enterica and Listeria monocytogenes inactivation dynamics after treatment with selected essential oils. Food Control. 2015;50:794–803.
  • Katz L, Baltz RH. Natural product discovery: past, present, and future. J Ind Microbiol Biotechnol. 2016;43(2–3):155–176.
  • Bauer A, Brönstrup M. Industrial natural product chemistry for drug discovery and development. Nat Prod Rep. 2014;31(1):35–60.
  • Morán A, Gutiérrez S, Martínez-Blanco H, et al. Non-toxic plant metabolites regulate Staphylococcus viability and biofilm formation: a natural therapeutic strategy useful in the treatment and prevention of skin infections. Biofouling. 2014;30(10):1175–1182.
  • Jafri H, Khan MSA, Ahmad I. In vitro efficacy of eugenol in inhibiting single and mixed-biofilms of drug-resistant strains of Candida albicans and Streptococcus mutans. Phytomedicine. 2019;54:206–213.
  • Fernandes Nassar S, Dombre C, Gastaldi E, et al. Soy protein isolate nanocomposite film enriched with eugenol, an antimicrobial agent: interactions and properties. J Appl Polym Sci. 2018;135(10):45941.
  • Valencia-Sullca C, Jiménez M, Jiménez A, et al. Influence of liposome encapsulated essential oils on properties of chitosan films. Polym Int. 2016;65(8):979–987.
  • Islam SS, Al-Sharif I, Sultan A, et al. Eugenol potentiates cisplatin anti-cancer activity through inhibition of ALDH-positive breast cancer stem cells and the NF-κB signaling pathway. Mol Carcinog. 2018;57(3):333–346.
  • Chen L, Gnanaraj C, Arulselvan P, et al. A review on advanced microencapsulation technology to enhance bioavailability of phenolic compounds: based on its activity in the treatment of type 2 diabetes. Trends Food Sci Technol. 2019;85:149–162.
  • Chen L, Lin X, Fan X, et al. A self-emulsifying formulation of Sonchus oleraceus Linn for an improved anti-diabetic effect in vivo. Food Funct. 2020;11(2):1225–1229.
  • Chen L, Lin X, Xu X, et al. Self-nano-emulsifying formulation of Sonchus oleraceus Linn for improved stability: implications for phenolics degradation under in vitro gastro-intestinal digestion. J Funct Foods. 2019;53:28–35.
  • Chen L, Lin X, Teng H. Emulsions loaded with dihydromyricetin enhance its transport through Caco-2 monolayer and improve anti-diabetic effffect in insulin resistant HepG2 cell. J Funct Foods. 2020;64:103672.
  • Chen L, Lin X, Yao M, et al. Self-nanoemulsions loaded with dihydromyricetin: Insights to their formulation stability. Food Hydrocoll. 2020;108:105888.
  • Carneiro HCF, Tonon RV, Grosso CRF, et al. Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. J Food Eng. 2013;115(4):443–451.
  • Costa JMG, Silva EK, Toledo Hijo AAC, et al. Microencapsulation of Swiss cheese bioaroma by spray-drying: process optimization and characterization of particles. Powder Technol. 2015;274:296–304.
  • Dong Z, Wang Q, Shao F, et al. Oxidative stability of gelling microcapsules encapsulating fish oil by complex coacervation using gelatin and peach gum as wall material. J Chinese Institute Food Sci Technol. 2014;14(7):66–72.
  • Yuan F, Chen T, Huang Q, et al. Preparation and performance studies on the microcapsule of Perilla oil entrapped with peach gum and gelatin by complex coacervation. J Yangtze Univ. 2016;13(15):69–73 (Chinese).
  • Piletti R, Bugiereck AM, Pereira AT, et al. Microencapsulation of eugenol molecules by β-cyclodextrine as a thermal protection method of antibacterial action. Mater Sci Eng C Mater Biol Appl. 2017;75:259–271.
  • Shinde U, Nagarsenker M. Microencapsulation of eugenol by gelatin-sodium alginate complex coacervation. Indian J Pharm Sci. 2011;73(3):311–315.
  • Yogalakshmi B, Viswanathan P, Anuradha CV. Investigation of antioxidant, anti-inflammatory and DNA-protective properties of eugenol in thioacetamide-induced liver injury in rats. Toxicology. 2010;268(3):204–212.
  • Elbahy DA, Madkour HI, Abdel-Raheem MH. Evaluation of antihyperlipidemic activity of eugenol in triton induced hyperlipidemia in rats. Int J Res Studies Biosci. 2015;3(10):19–26.
  • Kanuri G, Bergheim I. In vitro and in vivo models of non-alcoholic fatty liver disease (NAFLD). Int J Mol Sci. 2013;14(6):11963–11980.
  • Baldassarre F, Vergaro V, Scarlino F, et al. Polyelectrolyte capsules as carriers for growth factor inhibitor delivery to hepatocellular carcinoma. Macromol Biosci. 2012;12(5):656–665.
  • Wang K, He Q, Yan X, et al. Encapsulated photosensitive drugs by biodegradable microcapsules to incapacitate cancer cells. J Mater Chem. 2007;17(38):4018–4021.
  • Leporatti S, Palama IE, Coluccia AML, et al. Multi layered polyelectrolyte capsules and coated colloids: cytotoxicity and uptake by cancer cells. Sci Adv Mat. 2010;2(2):138–150.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.