112
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Can the cavi-precipitation process be exploited to generate smaller size drug nanocrystal?

, &
Pages 235-245 | Received 02 Aug 2020, Accepted 11 Dec 2020, Published online: 22 Jan 2021

References

  • Di L, Fish PV, Mano T. Bridging solubility between drug discovery and development. Drug Discov Today. 2012;17:486–495.
  • Müller RH, Keck CM. Twenty years of drug nanocrystals: where are we, and where to go? Eur J Pharm Biopharm. 2012;80:1–3.
  • Couillaud BM, Espeau P, Mignet N, et al. State of the art of pharmaceutical solid forms: from crystal property issues to nanocrystals formulation. ChemMedChem. 2019;14:8–23.
  • Fu T, Gu X, Liu Q, et al. Study on the stabilization mechanisms of wet-milled cepharanthine nanosuspensions using systematical characterization. Drug Dev Ind Pharm. 2020;46:200–208.
  • Gol D, Thakkar S, Misra M. Nanocrystal-based drug delivery system of risperidone: lyophilization and characterization. Drug Dev Ind Pharm. 2018;44:1458–1466.
  • Liu T, Müller RH, Möschwitzer JP. Production of drug nanosuspensions: effect of drug physical properties on nanosizing efficiency. Drug Dev Ind Pharm. 2018;44:233–242.
  • Nagaraj K, Narendar D, Kishan V. Development of olmesartan medoxomil optimized nanosuspension using the Box-Behnken design to improve oral bioavailability. Drug Dev Ind Pharm. 2017;43:1186–1196.
  • Patel PJ, Gajera BY, Dave RH. A quality-by-design study to develop Nifedipine nanosuspension: examining the relative impact of formulation variables, wet media milling process parameters and excipient variability on drug product quality attributes. Drug Dev Ind Pharm. 2018;44:1942–1952.
  • Wei Q, Keck CM, Müller RH. Solidification of hesperidin nanosuspension by spray drying optimized by design of experiment (DoE). Drug Dev Ind Pharm. 2018;44:1–12.
  • Jacob S, Nair AB, Shah J. Emerging role of nanosuspensions in drug delivery systems. Biomater Res. 2020;24:3.
  • Hashim FM, Abd Allah FI, Abdel-Rashid RS, et al. Glibenclamide nanosuspension inhaler: development, in vitro and in vivo assessment. Drug Dev Ind Pharm. 2020;46:762–774.
  • Ferrar JA, Sellers BD, Chan C, et al. Towards an improved understanding of drug excipient interactions to enable rapid optimization of nanosuspension formulations. Int J Pharm. 2020;578:119094.
  • Kuk DH, Ha ES, Ha DH, et al. Development of a resveratrol nanosuspension using the antisolvent precipitation method without solvent removal. Based on a quality by design (QbD) approach. Pharmaceutics. 2019;11:688.
  • Goel S, Sachdeva M, Agarwal V. Nanosuspension technology: recent patents on drug delivery and their characterizations. Recent Pat Drug Deliv Formul. 2019;13:91–104.
  • Zhou Y, Fang Q, Niu B, et al. Comparative studies on amphotericin B nanosuspensions prepared by a high pressure homogenization method and an antisolvent precipitation method. Colloids Surf B Biointerfaces. 2018;172:372–379.
  • Ndlovu ST, Ullah N, Khan S, et al. Domperidone nanocrystals with boosted oral bioavailability: fabrication, evaluation and molecular insight into the polymer-domperidone nanocrystal interaction. Drug Del Transl Res. 2019;9:284–297.
  • Lu Y, Wu W, Li T. Crystalline nanoparticles. In: Li T, Mattei A, editors. Pharmaceutical crystals: science and engineering. Hoboken (NJ): John Wiley & Sons; 2018. p. 463–502.
  • Dong Q, Yuan HL, Qian JJ, et al. Preparation and in vitro-in vivo characterization of trans-resveratrol nanosuspensions. Biomed Mater Eng. 2018;29:333–345.
  • Alshweiat A, Katona G, Csóka I, et al. Design and characterization of loratadine nanosuspension prepared by ultrasonic-assisted precipitation. Eur J Pharm Sci. 2018;122:94–104.
  • Kesisoglou F, Mitra A. Crystalline nanosuspensions as potential toxicology and clinical oral formulations for BCS II/IV compounds. AAPS J. 2012;14:677–687.
  • Merisko-Liversidge E, Liversidge GG. Nanosizing for oral and parenteral drug delivery: a perspective on formulating poorly-water soluble compounds using wet media milling technology. Adv Drug Deliv Rev. 2011;63:427–440.
  • Permana AD, McCrudden MT, Donnelly RF. Enhanced intradermal delivery of nanosuspensions of antifilariasis drugs using dissolving microneedles: a proof of concept study. Pharmaceutics. 2019;11:346.
  • Liu Q, Guan J, Sun Z, et al. Influence of stabilizer type and concentration on the lung deposition and retention of resveratrol nanosuspension-in-microparticles. Int J Pharm. 2019;569:118562.
  • Müller RH, Junghanns J. Drug nanocrystals/nanosuspensions for the delivery of poorly soluble drugs. In: Torchilin VP, editor. Nanoparticulates as drug carriers. London (UK): Imperial College Press; 2006. p. 307–328.
  • Rasenack N, Muller BW. Micron-size drug particles: common and novel micronization techniques. Pharm Dev Technol. 2004;9:1–13.
  • Horn D, Rieger J. Organic nanoparticles in the aqueous phase-theory, experiment, and use. Angew Chem Int Ed. 2001;40:4330–4361.
  • Matteucci M, Hotze M, Johnston K, et al. Drug nanoparticles by antisolvent precipitation: mixing energy versus surfactant stabilization. Langmuir. 2006;22:8951–8959.
  • D'Addio SM, Prud'homme RK. Controlling drug nanoparticle formation by rapid precipitation. Adv Drug Deliv Rev. 2011;63:417–426.
  • Kipp J, Wong J, Doty M, et al., inventors. Microprecipitation method for preparing submicron suspensions. US patent 6,607,784 B2. 2001.
  • Shi Y, Porter W, Merdan T, et al. Recent advances in intravenous delivery of poorly water-soluble compounds. Expert Opin Drug Deliv. 2009;6:1261–1282.
  • Rabinow B, Kipp J, Papadopoulos P, et al. Itraconazole IV nanosuspension enhances efficacy through altered pharmacokinetics in the rat. Int J Pharm. 2007;339:251–260.
  • Kipp J. The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. Int J Pharm. 2004;284:109–122.
  • Rabinow B. Nanosuspensions in drug delivery. Nat Rev Drug Discov. 2004;3:785–796.
  • Müller RH, Möschwitzer J, inventors. Methods and device for producing very fine particles and coating such particles. US patent 20090297565. 2009.
  • Kakran M, Shegokar R, Sahoo NG, et al. Fabrication of quercetin nanocrystals: comparison of different methods. Eur J Pharm Biopharm. 2012;80:113–121.
  • Sinha B, Muller RH, Moschwitzer JP. Systematic investigation of the cavi-precipitation process for the production of ibuprofen nanocrystals. Int J Pharm. 2013;458:315–323.
  • Hamdallah SI, Zoqlam R, Erfle P, et al. Microfluidics for pharmaceutical nanoparticle fabrication: the truth and the myth. Int J Pharm. 2020; 584:119408.
  • Renaud S, de Lorgeril M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet. 1992;339:1523–1526.
  • Kopp P. Resveratrol, a phytoestrogen found in red wine. A possible explanation for the conundrum of the ‘French paradox’? Eur J Endocrinol. 1998;138:619–620.
  • Berman AY, Motechin RA, Wiesenfeld MY, et al. The therapeutic potential of resveratrol: a review of clinical trials. NPJ Precision Onc. 2017;1:35.
  • Walle T, Hsieh F, DeLegge MH, et al. High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab Dispos. 2004;32:1377–1382.
  • Caruso F, Mendoza L, Castro P, et al. Antifungal activity of resveratrol against Botrytis cinerea is improved using 2-furyl derivatives. PloS One. 2011;6:e25421.
  • Pouton CW, Porter CJ. Formulation of lipid-based delivery systems for oral administration: materials, methods and strategies. Adv Drug Deliv Rev. 2008;60:625–637.
  • Amri A, Chaumeil JC, Sfar S, et al. Administration of resveratrol: what formulation solutions to bioavailability limitations? J Control Release. 2012;158:182–193.
  • Kobierski S, Ofori-Kwakye K, Muller R, et al. Resveratrol nanosuspensions for dermal application production, characterization, and physical stability. Pharmazie. 2009;64:741–747.
  • Dean JA, Lange NA. Physical properties. In: Dean JA, editor. Lange’s handbook of chemistry. 15th ed. New York (NY): Mc-Graw-Hill; 1999.
  • Yaws C. Chemical properties handbook: physical, thermodynamic, environmental, transport, safety and health related properties for organic and inorganic chemicals. New York (NY): McGraw-Hill Book Co.; 1999.
  • ICH-Guideline-Q3C, editor. ICH Guideline Q3C: impurities: guideline for residual solvents. International conference on harmonization of Technical Requirements for Registration of New Chemical Entity. Rockville, MD; 1997.
  • Butt HJ, Kappl M. Surface forces in polymer solutions and melts. Surface and interfacial forces. Weinheim (Germany): Wiley-Vch Verlag GmbH & Co. KGaA; 2010. p. 327–361.
  • Beck C, Dalvi SV, Dave RN. Controlled liquid antisolvent precipitation using a rapid mixing device. Chem Eng Sc. 2010;65:5669–5675.
  • Türk M, Lietzow R. Formation and stabilization of submicron particles via rapid expansion processes. J Supercrit Fluid. 2008;45:346–355.
  • Chikhalia V, Forbes R, Storey R, et al. The effect of crystal morphology and mill type on milling induced crystal disorder. Eur J Pharm Sci. 2006;27:19–26.
  • Berbenni V, Marini A, Bruni G, et al. Thermoanalytical and spectroscopic characterization of solid state dipyridamole. J Thermal Anal Calorim. 2002;68:413–422.
  • Rosa F, Corvis Y, Lai-Kuen R, et al. Influence of particle size on the melting characteristics of organic compounds. J Therm Anal Calorim. 2015;120:783–787.
  • Hasa D, Voinovich D, Perissutti B, et al. Reduction of melting temperature and enthalpy of drug crystals: theoretical aspects. Eur J Pharm Sci. 2013;50:17–28.
  • Chiarappa G, Piccolo A, Colombo I, et al. Exploring the shape influence on melting temperature, enthalpy, and solubility of organic drug nanocrystals by a thermodynamic model. Crys Growth Des. 2017;17:4072–4083.
  • Sun J, Simon S. The melting behavior of aluminum nanoparticles. Thermochim Acta. 2007;463:32–40.
  • Singh M, Lara S, Tlali S. Effects of size and shape on the specific heat, melting entropy and enthalpy of nanomaterials. J Taibah Univ Sci. 2017;11:922–929.
  • Ash M, Ash I. Handbook of green chemicals. 2 ed. New York (NY): Synapse Info Resources; 2004.
  • Ivanova R, Alexandridis P, Lindman B. Interaction of poloxamer block copolymers with cosolvents and surfactants. Colloid Surface A. 2001;183–185:41–53.
  • Chiou H, Chan HK, Prud'homme RK, et al. Evaluation on the use of confined liquid impinging jets for the synthesis of nanodrug particles. Drug Dev Ind Pharm. 2008;34:59–64.
  • Kakran M, Sahoo NG, Tan IL, et al. Preparation of nanoparticles of poorly water-soluble antioxidant curcumin by antisolvent precipitation methods. J Nanopart Res. 2012;14:1–11.
  • Liu T, Möschwitzer JP, Müller RH. The influence of resveratrol solid state on particle siye reduction effectiveness. Proceedings of the 7th Polish-German Symposium on Pharmaceutical Sciences; 2013 May 24–25; Gdańsk, Poland.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.