277
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Characterization, in vitro dissolution, and pharmacokinetics of different batches of efavirenz raw materials

, , , ORCID Icon, , , , , & show all
Pages 725-734 | Received 29 Sep 2020, Accepted 14 Apr 2021, Published online: 09 Jun 2021

References

  • De Clercq E. The role of non-nucleoside reverse transcriptase inhibitors (NNRTIs) in the therapy of HIV-1 infection. Antiviral Res. 1998;38(3):153–179.
  • FDA. Susvita. In: Research CfDEa, editor. Silver Spring (MD): U.S. Department of Health and Human Services; 2019.
  • Madhavi BB, Kusum B, Krishna Chatanya CH, et al. Dissolution enhancement of efavirenz by solid dispersion and pegylation techniques. Int J Pharm Investig. 2011;1(1):29–34.
  • Yang J, Grey K, Doney J. An improved kinetics approach to describe the physical stability of amorphous solid dispersions. Int J Pharm. 2010;384(1–2):24–31.
  • Fabbiani M, Di Giambenedetto S, Bracciale L, et al. Pharmacokinetic variability of antiretroviral drugs and correlation with virological outcome: 2 years of experience in routine clinical practice. J Antimicrob Chemother. 2009;64(1):109–117.
  • Friedland G, Khoo S, Jack C, et al. Administration of efavirenz (600 mg/day) with rifampicin results in highly variable levels but excellent clinical outcomes in patients treated for tuberculosis and HIV. J Antimicrob Chemother. 2006;58(6):1299–1302.
  • Kappelhoff BS, Huitema ADR, Yalvaç Z, et al. Population pharmacokinetics of efavirenz in an unselected cohort of HIV-1-infected individuals. Clin Pharmacokinet. 2005;44(8):849–861.
  • Mukonzo JK, S N, Rekić D, et al. HIV/AIDS patients display lower relative bioavailability of efavirenz than healthy subjects. Clin Pharmacokinet. 2011;50(8):531–540.
  • Fandaruff C, Silva MAS, Bedor DCG, et al. Correlation between microstructure and bioequivalence in anti-HIV drug efavirenz. Eur J Pharm Biopharm. 2015;91:52–58.
  • Maccaroni E, Malpezzi L, Masciocchi N. Structures from powders: bupropion hydrochloride. J Pharm Biomed Anal. 2009;50(2):257–261.
  • Radesca LA, Maurin MB, Rabel SR, et al. InventorsCrystalline efavirenz. United States of America patent WO99/64405. 1999.
  • Bhattachar SN, Wesley JA, Fioritto A, et al. Dissolution testing of a poorly soluble compound using the flow-through cell dissolution apparatus. Int J Pharm. 2002;236(1–2):135–143.
  • Yu LX. Pharmaceutical quality by design: product and process development, understanding, and control. Pharm Res. 2008;25(4):781–791.
  • Cappelletto E, Rebuffi L, Flor A, et al. Microstructural effects of high-energy grinding on poorly soluble drugs: the case study of efavirenz. Powder Diffr. 2017;32(S1):S135–S140.
  • Da CA, Lione VOF, Rodrigues CR, et al. Efavirenz dissolution enhancement II: aqueous co-spray-drying. Int J Pharm Sci Res. 2015;6(9):3807–3820.
  • Da Costa MA, Seiceira RC, Rodrigues CR, et al. Efavirenz dissolution enhancement I: co-micronization. Pharmaceutics. 2012;5(1):1–22.
  • Patel GV, Patel VB, Pathak A, et al. Nanosuspension of efavirenz for improved oral bioavailability: formulation optimization, in vitro, in situ and in vivo evaluation. Drug Dev Ind Pharm. 2014;40(1):12–80.
  • Honório TS, Pinto EC, Rocha HVA, et al. In vitro–in vivo correlation of efavirenz tablets using GastroPlus®. AAPS Pharm Sci Tech. 2013;14(3):1244–1254.
  • Pinto EC, do Carmo FAC, Honório TS, et al. Influence of the efavirenz micronization on tableting and dissolution. Pharmaceutics. 2012;4(3):430–441.
  • Alizadeh MN, Shayanfar A, Jouyban A. Solubilization of drugs using sodium lauryl sulfate: experimental data and modeling. J Mol Liq. 2018;268:410–414.
  • Mahmood ME, Al-Koofee DAF. Effect of temperature changes on critical micelle concentration for Tween series surfactant. GJSFR B: Chem. 2013;13(4).
  • Pinto EC, Cabral LM, de Sousa VP. Development of a discriminative intrinsic dissolution method for efavirenz. Dissolution Technol. 2014;21(2):31–40.
  • Dressman JB, Amidon GL, Reppas C, et al. Dissolution testing as a prognostic tool for oral drug absorption: immediate release dosage forms. Pharm Res. 1998;15(1):11–22.
  • Paprskářová A, Možná P, Oga EF, et al. Instrumentation of flow-through USP IV dissolution apparatus to assess poorly soluble basic drug products: a technical note. AAPS PharmSciTech. 2016;17(5):1261–1266.
  • Wähling C, Schröter C, Hanefeld A. Flow-through cell method and IVIVR for poorly soluble drugs. Dissolution Technol. 2011;18(4):15–25.
  • Niederquell A, Kuentz M. Biorelevant drug solubility enhancement modeled by a linear solvation energy relationship. J Pharm Sci. 2018;107(1):503–506. (
  • Gao JZH, Hussain MA, Motheram R, et al. Investigation of human pharmacoscintigraphic behavior of two tablets and a capsule formulation of a high dose, poorly water soluble/highly permeable drug (efavirenz). J Pharm Sci. 2007;96(11):2970–2977.
  • Bedor DCG, Souza Filho JHD, Ramos VLS, et al. A sensitive and robust LC–MS/MS method with monolithic column and electrospray ionization for the quantitation of efavirenz in human plasma: application to a bioequivalence study. Quím Nova. 2011;34(6):950–955.
  • Europe Co. European Pharmacopoeia. 9 ed. 2019.
  • Klein S. The use of biorelevant dissolution media to forecast the in vivo performance of a drug.AAPS J. 2010;12(3):397–406.
  • Wood J, Syarto J, Letterman H. Improved holder for intrinsic dissolution rate studies. J Pharm Sci. 1965;54(7):1068.
  • Khan KA. The concept of dissolution efficiency. J Pharm Pharmacol. 1975;27(1):48–49.
  • Brockmeier D. In vitro/in vivo correlation of dissolution using moments of dissolution and transit times. Acta Pharm Technol. 1986;32:164–174.
  • Costa P, Lobo JMS. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13(2):123–133.
  • Peppas NA, Sahlin JJ. A simple equation for the description of solute release. III. Coupling of diffusion and relaxation. Int J Pharm. 1989;57(2):169–172.
  • Zhang Y, Huo M, Zhou J, et al. DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. AAPS J. 2010;12(3):263–271.
  • Moore JW, Flanner HH. Mathematical comparison of dissolution profiles. Pharma Tech. 1996;20:64–74.
  • Zeller W, Weber H, Panoussis B, et al. Refinement of blood sampling from the sublingual vein of rats. Lab Anim. 1998;32(4):369–376.
  • Parasuraman S, Raveendran R, Kesavan R. Blood sample collection in small laboratory animals. J Pharmacol Pharmacother. 2010;1(2):87–93.
  • Keizer RJ, Jansen RS, Rosing H, et al. Incorporation of concentration data below the limit of quantification in population pharmacokinetic analyses. Pharmacol Res Perspect. 2015;3(2):1–15.
  • Wardhana YW, Soewandhi SN, Wikarsa S, et al. Polymorphic properties and dissolution profile of efavirenz due to solvents recrystallization. Pak J Pharm Sci. 2019;32(3):981–986.
  • Radesca LA, Maurin MB, Rabel SR, et al. InventorsCrystalline efavirenz. United States of America patent 6673372B1; 2004.
  • Bakatselou V, Oppenheim RC, Dressman JB. Solubilization and wetting effects of bile salts on the dissolution of steroids. Pharm Res. 1991;8(12):1461–1469.
  • Zakeri-Milani P, Barzegar-Jalali M, Azimi M, et al. Biopharmaceutical classification of drugs using intrinsic dissolution rate (IDR) and rat intestinal permeability. Eur J Pharm Biopharm. 2009;73(1):102–106.
  • Yu LX, Carlin AS, Amidon GL, et al. Feasibility studies of utilizing disk intrinsic dissolution rate to classify drugs. Int J Pharm. 2004;270(1–2):221–227.
  • Costa P, Sousa Lobo JM. Evaluation of mathematical models describing drug release from estradiol transdermal systems. Drug Dev Ind Pharm. 2003;29(1):89–97.
  • Ritger PL, Peppas NA. A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Contr Release. 1987;5(1):23–26.
  • Zhang GH, Vadino WA, Yang TT, et al. Evaluation of the flow-through cell dissolution apparatus: effects of flow rate, glass beads and tablet position on drug release from different type of tablets. Drug Dev Ind Pharm. 1994;20(13):2063–2078.
  • Guo F, Cheng X, Hsieh E, et al. Prospective plasma efavirenz concentration assessment in Chinese HIV-infected adults enrolled in a large multicentre study. HIV Med. 2018;19(7):440–451.
  • Marzolini C, Telenti A, Decosterd LA, et al. Efavirenz plasma levels can predict treatment failure and central nervous system side effects in HIV-1-infected patients. AIDS. 2001;15(1):71–75.
  • Balani SK, Kauffman LR, de Luna FA, et al. Nonlinear pharmacokinetics of efavirenz (dmp-266), a potent HIV-1 reverse transcriptase inhibitor, in rats and monkeys. Drug Metab Dispos. 1999;27(1):41–45.
  • Emami J. In vitro–In vivo correlation: from theory to applications. J Pharm Pharmaceut Sci. 2006;9(2):169–189.
  • Athanassiou GC, Rekkas DM, Choulis NH. Correlation of in vitro dissolution data with in vivo plasma concentrations, for three, orally administered, formulations of sulphamethoxazole-trimethoprim, by statistical moments analysis. Int J Pharm. 1993;90(1):51–58. (
  • U.S. Extended release oral dosage forms: development, evaluation, and application of in-vitro/in-vivo correlations. In: Services USDoHaH, editor.: Food and Drug Adminstration, Center for Drug Evaluation and Research; 1997.
  • Balan G, Timmins P, Greene DS, et al. In vitro-in vivo correlation (IVIVC) models for metformin after administration of modified-release (MR) oral dosage forms to healthy human volunteers. J Pharm Sci. 2001;90(8):1176–1185.
  • Chiappetta DA, Hocht C, Taira C, et al. Efavirenz-loaded polymeric micelles for pediatric anti-HIV pharmacotherapy with significantly higher oral bioavailability. Nanomedicine. 2010;5(1):11–25.
  • Vieira AC, Ferreira Fontes DA, Chaves LL, et al. Multicomponent systems with cyclodextrins and hydrophilic polymers for the delivery of efavirenz. Carbohydr Polym. 2015;130:133–140.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.