266
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Solid lipid nanoparticles by Venturi tube: preparation, characterization and optimization by Box–Behnken design

, , , , & ORCID Icon
Pages 1302-1309 | Received 09 Mar 2021, Accepted 03 Aug 2021, Published online: 13 Jan 2022

References

  • Escalona-Rayo O, Fuentes-Vázquez P, Leyva-Gómez G, et al. Nanoparticulate strategies for the treatment of polyglutamine diseases by halting the protein aggregation process. Drug Dev Ind Pharm. 2017;43(6):871–888.
  • Puglia C, Bonina F. Lipid nanoparticles as novel delivery systems for cosmetics and dermal pharmaceuticals. Expert Opin Drug Deliv [Internet]. 2012;9(4):429–441.
  • Krishnaiah YS. Pharmaceutical technologies for enhancing oral bioavailability of poorly soluble drugs. JBB. 2010;02(02):28–36.
  • Zambrano-Zaragoza ML, Mercado-Silva E, Ramirez-Zamorano P, et al. Use of solid lipid nanoparticles (SLNs) in edible coatings to increase guava (Psidium guajava L.) shelf-life. Food Res Int [Internet]. 2013;51(2):946–953.
  • Kumar S, Randhawa JK. High melting lipid based approach for drug delivery: solid lipid nanoparticles. Mater Sci Eng C. 2013;33(4):1842–1852.
  • Soni K, Kukereja BK, Kapur M, et al. Lipid nanoparticles: future of oral drug delivery and their current trends and regulatory issues. Int J Curr Pharm Rev Res. 2016;7(1):1–18.
  • Dudhipala N, Veerabrahma K. Candesartan cilexetil loaded solid lipid nanoparticles for oral delivery: characterization, pharmacokinetic and pharmacodynamic evaluation. Drug Deliv. 2016;23(2):395–404.
  • Sundararaj S, Selladurai V. An analysis on the proportional mixing of liquids using venturi jet mixer. Int J Appl Eng Res. 2008;3(7):891–902.
  • Lingayat VJ, Zarekr NS, Shendge RS. Solid lipid nanoparticles: a review. Nanosci Nanotechnol Res. 2017;4(2):67–72.
  • Colmenares-Roldan GJ, Agudelo-Gomez LM, Carlos-Cronelio JA, Fernando-Rodriguez L, et al. Production of polycaprolactone nanoparticles with low polydispesity index in a tubuluar recirculating system by using a multifactorial desig of experiments. J Nanoparticle Res [Internet]. 2018;20:68.
  • García-Salazar G, Zambrano-Zaragoza ML, Quintanar-Guerrero D. Preparation of nanodispersions by solvent displacement using the Venturi tube. Int J Pharm. 2018;545(1-2):254–260.
  • Singh Y, Ojha P, Srivastava M, et al. Reinvestigating nanoprecipitation via Box-Behnken design: a systematic approach. J Microencapsul. 2015;32(1):75–85.
  • Jung T, Breitenbach A, Kissel T. Sulfobutylated poly(vinyl alcohol)-graft-poly(lactide-co-glycolide)s facilitate the preparation of small negatively charged biodegradable nanospheres. J Control Release. 2000;67(2-3):157–169.
  • Hao J, Fang X, Zhou Y, et al. Development and optimization of solid lipid nanoparticle formulation for ophthalmic delivery of chloramphenicol using a Box-Behnken design. Int J Nanomedicine. 2011;6:683–692.
  • Ferreira SLC, Bruns RE, Ferreira HS, et al. Box-Behnken design: an alternative for the optimization of analytical methods. Anal Chim Acta. 2007;597(2):179–186.
  • Bianchin-Bianchin M, Prebianca G, Frielink-Immich M, et al. Monoolein-based nanoparticles containing indinavir: a taste-masked drug delivery system. Drug Dev Ind Pharm [Internet]. 2020;47(1):83–91.
  • Dawoud M, Abourehab MAS, Abdou R. Monoolein cubic nanoparticles as novel carriers for docetaxel. J Drug Deliv Sci Technol [Internet]. 2020;56:101501.
  • Ganem-Quintanar A, Quintanar-Guerrero D, Buri P. Monoolein: a review of the pharmaceutical applications. Drug Dev Ind Pharm. 2000;26(8):809–820.
  • Dudhipala N, Janga KY. Lipid nanoparticles of zaleplon for improved oral delivery by Box-Behnken design: optimization, in vitro and in vivo evaluation. Drug Dev Ind Pharm. 2017;43(7):1205–1214.
  • Sundararaj S, Selladurai V. Flow and mixing pattern of transverse turbulent jet in Venturi-Jet mixer. Arab J Sci Eng. 2013;38(12):3563–3573.
  • Hashad RA, Ishak RAH, Fahmy S, et al. Chitosan-tripolyphosphate nanoparticles: Optimization of formulation parameters for improving process yield at a novel pH using artificial neural networks. Int J Biol Macromol. 2016;86:50–58.
  • Wen-Zhu L, Cheng-Cheng W, Rui- Sang L, et al. Actinobacillus succinogenes ATCC 55618 fermentation medium optimization for the production of succinic acid by response surface methodology. J Biomed Biotechnol. 2012; 2012:626137–626139.
  • Helgason T, Awad TS, Kristbergsson K, et al. Effect of surfactant surface coverage on formation of solid lipid nanoparticles (SLN). J Colloid Interface Sci [Internet]. 2009;334(1):75–81.
  • Patel K, Padhye S, Nagarsenker M. Duloxetine HCl lipid nanoparticles: Preparation, characterization, and dosage form design. AAPS PharmSciTech. 2012;13(1):125–133.
  • Murakami H, Kobayashi M, Takeuchi H, et al. Preparation of poly(DL-lactide-co-glycolide) nanoparticles by modified spontaneous emulsification solvent diffusion method . Int J Pharm. 1999;187(2):143–152.
  • Rietscher R, Thum C, Lehr C, et al. Semi-Automated nanoprecipitation-system: an option for operator independent, scalable and size adjustable nanoparticle synthesis. Pharm Res. 2015;32(6):1859–1863.
  • Escalona-Rayo O, Fuentes-Vázquez P, Jardon-Xicotencatl S, et al. Rapamycin-loaded polysorbate 80-coated PLGA nanoparticles: optimization of formulation variables and in vitro anti-glioma assessment. J Drug Deliv Sci Technol [Internet]. 2019;52(May):488–499.
  • Sankalia M, Mashru R, Sankalia J, et al. Evaluation and simultaneous optimization of papain entrapped in crosslinked alginate beads using 3 factorial design and the desirability function. Ars Pharm. 2004;45(3):253–279.
  • Sivakumar T, Manavalan R, Valliappan K. Global optimization using derringer's desirability function: enantioselective determination of ketoprofen in formulations and in biological matrices. Acta Cromatographica. 2007;19:29–47.
  • Ebrahimi HA, Javadzadeh Y, Hamidi M, et al. Repaglinide-loaded solid lipid nanoparticles: effect of using different surfactants/stabilizers on physicochemical properties of nanoparticles. Daru. 2015;23(46):46–11.
  • Kocbek P, Baumgartner S, Kristl J. Preparation and evaluation of nanosuspensions for enhancing the dissolution of poorly soluble drugs. Int J Pharm. 2006;312(1-2):179–186.
  • Beck-Broichsitter M, Nicolas J, Couvreur P. Solvent selection causes remarkable shifts of the "ouzo region" for poly(lactide-co-glycolide) nanoparticles prepared by nanoprecipitation. Nanoscale [Internet]. 2015;7(20):9215–9221.
  • Mehnert W, Mader K. Solid lipid nanoparticles production, characterization and applications. Adv Drug Deliv Rev. 2001;47(2–3):165–196.
  • Trotta M, Debernardi F, Caputo O. Preparation of solid lipid nanoparticles by a solvent emulsification-diffusion technique. Int J Pharm [Internet]. 2003;257(1-2):153–160.
  • Heurtault B, Saulnier P, Pech B, et al. Physico-chemical stability of colloidal lipid particles. Biomaterials. 2003;24(23):4283–4300.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.