1,301
Views
7
CrossRef citations to date
0
Altmetric
Review Articles

Stereolithography 3D printing technology in pharmaceuticals: a review

ORCID Icon, , ORCID Icon &
Pages 1362-1372 | Received 07 Mar 2021, Accepted 12 Oct 2021, Published online: 29 Oct 2021

References

  • Campbell TW, C, Ivanova O, Garrett B. Could 3d printing change the world? Technologies and implications of additive manufacturing. Washington (DC): Atlantic Council; 2012. p. 1–14.
  • Hwang HH, Zhu W, Victorine G, et al. 3D-printing of functional biomedical microdevices via light- and Extrusion-Based approaches. Small Methods. 2018;2(2):1700277.
  • Peterson GI, Larsen MB, Ganter MA, et al. 3D-printed mechanochromic materials. ACS Appl Mater Interfaces. 2015;7(1):577–583.
  • Anciaux SK, Geiger M, Bowser MT. 3D printed micro free-flow electrophoresis device. Anal Chem. 2016;88(15):7675–7682.
  • Wang X, Ao Q, Tian X, et al. 3D bioprinting technologies for hard tissue and organ engineering. Materials. 2016;9(10):802.
  • Noorani R. 3D printing: technology, applications, and selection. 1st ed. Boca Raton (FL): CRC Press; 2017.
  • Randolph SA. 3D printing: what are the hazards? Workplace Health Saf. 2018;66(3):164–164.
  • Kim J, Kong JS, Han W, et al. 3D cell printing of tissue/organ-mimicking constructs for therapeutic and drug testing applications. IJMS. 2020;21(20):7757.
  • Gong H, Woolley AT, Nordin GP. High density 3D printed microfluidic valves, pumps, and multiplexers. Lab Chip. 2016;16(13):2450–2458.
  • Macdonald NP, Cabot JM, Smejkal P, et al. Comparing microfluidic performance of three-dimensional (3D) printing platforms. Anal Chem. 2017;89(7):3858–3866.
  • Johnson AR, Caudill CL, Tumbleston JR, et al. Single-step fabrication of computationally designed microneedles by continuous liquid interface production. PLoS One. 2016;11(9):e0162518.
  • Chrzan R, Miechowicz S, Urbanik A, et al. Individually fitted hearing aid device manufactured using rapid prototyping based on ear CT. A case report. Neuroradiol J. 2009;22(2):209–214.
  • Dhir V, Itoi T, Fockens P, et al. Novel ex vivo model for hands-on teaching of and training in EUS-guided biliary drainage: creation of "Mumbai EUS" stereolithography/3D printing bile duct prototype (with videos). Gastrointest Endosc. 2015;81(2):440–446.
  • Ventola CL. Medical applications for 3D printing: current and projected uses. P T. 2014;39(10):704–711.
  • Tunnicliffe A. The past, present and future of 3D printing in the pharmaceutical industry. 2020. https://www.ns-healthcare.com/analysis/additive-manufacturing-3d-printing/
  • Maulvi FA, Shah MJ, Solanki BS, et al. Application of 3D printing technology in the development of novel drug delivery systems. Int J Drug Dev Res. 2017;9:44–49. https://www.ijddr.in/drug-development/application-of-3d-printing-technology-in-the-development-of-novel-drug-delivery-systems.php?aid=18776
  • Park JH, Jung JW, Kang H-W, et al. Indirect three-dimensional printing of synthetic polymer scaffold based on thermal molding process. Biofabrication. 2014;6(2):025003.
  • Pravin S, Sudhir A. Integration of 3D printing with dosage forms: a new perspective for modern healthcare. Biomed Pharmacother. 2018; 107:146–154.
  • Prasad LK, Smyth H. 3D printing technologies for drug delivery: a review. Drug Dev Ind Pharm. 2016;42(7):1019–1031.
  • First 3D-printed pill. Nat Biotechnol. 2015;33:1014–1014.
  • Ursan ID, Chiu L, Pierce A. Three-dimensional drug printing: a structured review. J Am Pharm Assoc. 2013;53(2):136–144.
  • O Oyewumi M. 3D printing technology in pharmaceutical drug delivery: prospects and challenges. J Biomol Res Ther. 2015;04(04):1–3.
  • Larush L, Kaner I, Fluksman A, et al. 3D printing of responsive hydrogels for drug-delivery systems. J 3D Print Med. 2017;1(4):219–229.
  • Baker D. Artificial intelligence: the future landscape of genomic medical diagnosis: dataset in Silico artificial intelligent clinical information, and machine learning systems. In: Lambert CG, Baker DJ, Patrinos GP, editors. Human genome informatics. San Diego: Academic Press; 2018. p. 223–267.
  • Popova M, Isayev O, Tropsha A. Deep reinforcement learning for de novo drug design. Sci Adv. 2018;4:eaap7885.
  • Han R, Xiong H, Ye Z, et al. Predicting physical stability of solid dispersions by machine learning techniques. J Control Release. 2019;311–312:16–25.
  • Harrer S, Shah P, Antony B, et al. Artificial intelligence for clinical trial design. Trends Pharmacol Sci. 2019;40(8):577–591.
  • Madzarevic M, Medarevic D, Vulovic A, et al. Optimization and prediction of ibuprofen release from 3D DLP printlets using artificial neural networks. Pharmaceutics. 2019;11:544.
  • Elbadawi M, Muñiz Castro B, Gavins FKH, et al. M3DISEEN: a novel machine learning approach for predicting the 3D printability of medicines. Int J Pharm. 2020;590:119837.
  • Elbadawi M, McCoubrey LE, Gavins FKH, et al. Harnessing artificial intelligence for the next generation of 3D printed medicines. Adv Drug Deliv Rev. 2021;175:113805.
  • Stanojević G, Medarević D, Adamov I, et al. Tailoring atomoxetine release rate from DLP 3D-printed tablets using artificial neural networks: influence of tablet thickness and drug loading. Molecules. 2020;26(1):111.
  • Khaled SA, Burley JC, Alexander MR, et al. 3D printing of tablets containing multiple drugs with defined release profiles. Int J Pharm. 2015;494(2):643–650.
  • Goyanes A, Robles Martinez P, Buanz A, et al. Effect of geometry on drug release from 3D printed tablets. Int J Pharm. 2015;494(2):657–663.
  • Awari GK, Thorat CS, Ambade V, et al. Additive manufacturing and 3D printing technology. 1st ed. Boca Raton (FL): CRC Press/Taylor & Francis Group, LLC; 2021.
  • Łaszcz M, Witkowska A. Studies of phase transitions in the aripiprazole solid dosage form. J Pharm Biomed Anal. 2016;117:298–303.
  • Water JJ, Bohr A, Boetker J, et al. Three-dimensional printing of drug-eluting implants: preparation of an antimicrobial polylactide feedstock material. J Pharm Sci. 2015;104(3):1099–1107.
  • Yu DG, Zhu LM, Branford-White CJ, et al. Three-dimensional printing in pharmaceutics: Promises and problems. J Pharm Sci. 2008;97(9):3666–3690.
  • Bakhatwar M, Chikkala Vnvk SR. Three-dimensional printing in pharmaceutical technology – an overview of innovations. Innov Pharm Pharmacother. 2019;7:67–71.
  • Zheng F, Huang S. Advances in study on three-dimensional printing in pharmaceutics. Chinese Herb Med. 2016;8(2):121–125.
  • Aimar A, Palermo A, Innocenti B. The role of 3D printing in medical applications: a state of the art. J Healthc Eng. 2019;2019:1–10.
  • Khan FA, Narasimhan K, Swathi CSV, et al. 3D printing technology in customized drug delivery system: current state of the art, prospective and the challenges. Curr Pharm Des. 2018;24(42):5049–5061.
  • Zhu X, Li H, Huang L, et al. 3D printing promotes the development of drugs. Biomed Pharmacother. 2020;131:110644.
  • Ameeduzzafar Alruwaili NK, Rizwanullah M, et al. 3D printing technology in design of pharmaceutical products. Curr Pharm Des. 2019;24:5009–5018.
  • Mathew E, Pitzanti G, Larrañeta E, et al. 3D printing of pharmaceuticals and drug delivery devices. Pharmaceutics. 2020;12(3):266.
  • Trenfield SB. Innovations in 3D printed pharmaceuticals. ONdrugDelivery Magazine. 2020;109:45–49.
  • Ligon SC, Liska R, Stampfl J, et al. Polymers for 3D printing and customized additive manufacturing. Chem Rev. 2017;117(15):10212–10290.
  • Kim GB, Lee S, Kim H, et al. Three-dimensional printing: basic principles and applications in medicine and radiology. Korean J Radiol. 2016;17(2):182–197.
  • Hodgdon T, Danrad R, Patel MJ, et al. Logistics of three-dimensional printing: primer for radiologists. Acad Radiol. 2018;25(1):40–51.
  • Chua CK, Leong KF, An J. Introduction to rapid prototyping of biomaterials. In: Narayan R, editor. Rapid prototyping of biomaterials. San Diego: Elsevier; 2014. p. 1–15.
  • Tofail SAM, Koumoulos EP, Bandyopadhyay A, et al. Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Mater Today. 2018;21(1):22–37.
  • Goole J, Amighi K. 3D printing in pharmaceutics: a new tool for designing customized drug delivery systems. Int J Pharm. 2016;499(1-2):376–394.
  • Lau G-K, Shrestha M. Ink-jet printing of micro-electro-mechanical systems (MEMS). Micromachines. 2017;8(6):194.
  • Cui X, Boland T, D.D’Lima D, et al. Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Pat Drug Deliv Formul. 2012;6(2):149–155.
  • Gardin C, Ferroni L, Latremouille C, et al. Recent applications of three dimensional printing in cardiovascular medicine. Cells. 2020;9(3):742.
  • He D, Han F, Wang Z, et al. A review of 3D printing via fused deposition modeling in pharmaceutics. Yao Xue Xue Bao. 2016;51:1659–1665.
  • Long J, Gholizadeh H, Lu J, et al. Application of fused deposition modelling (FDM) method of 3D printing in drug delivery. Curr Pharm Des. 2017;23(3):433–439.
  • Goyanes A, Fina F, Martorana A, et al. Development of modified release 3D printed tablets (printlets) with pharmaceutical excipients using additive manufacturing. Int J Pharm. 2017;527(1–2):21–30.
  • Alhnan MA, Okwuosa TC, Sadia M, et al. Emergence of 3D printed dosage forms: opportunities and challenges. Pharm Res. 2016;33(8):1817–1832.
  • Lim SH, Chia SMY, Kang L, et al. Three-dimensional printing of carbamazepine sustained-release scaffold. J Pharm Sci. 2016;105(7):2155–2163.
  • Goyanes A, Chang H, Sedough D, et al. Fabrication of controlled-release budesonide tablets via desktop (FDM) 3D printing. Int J Pharm. 2015;496(2):414–420.
  • Gumaste SG, Gupta SS, Serajuddin ATM. Investigation of polymer-surfactant and polymer-drug-surfactant miscibility for solid dispersion. AAPS J. 2016;18(5):1131–1143.
  • Gioumouxouzis CI, Baklavaridis A, Katsamenis OL, et al. A 3D printed bilayer oral solid dosage form combining metformin for prolonged and glimepiride for immediate drug delivery. Eur J Pharm Sci. 2018;120:40–52.
  • Fina F, Madla CM, Goyanes A, et al. Fabricating 3D printed orally disintegrating printlets using selective laser sintering. Int J Pharm. 2018;541(1–2):101–107.
  • Zhou Y. The recent development and applications of fluidic channels by 3D printing. J Biomed Sci. 2017;24(1):80.
  • Park BJ, Choi HJ, Moon SJ, et al. Pharmaceutical applications of 3D printing technology: current understanding and future perspectives. J Pharm Investig. 2018;49:575–585.
  • Hull CW, Arcadia C. Apparatus for production of three-dimensional objects by stereolithography. US Patent, 1984.
  • Lonjon C. The history of 3d printer: from rapid prototyping to additive fabrication. https://www.sculpteo.com/blog/2017/03/01/whos-behind-the-three-main-3d-printing-technologies/.
  • Chia HN, Wu BM. Recent advances in 3D printing of biomaterials. J Biol Eng. 2015;9:4.
  • Huang B, Wu B, Han L, et al. Preparation of a novel cationic photosensitive resin (3D-SLR01) for stereolithography 3D printing and determination of its some properties. J Wuhan Univ Technol-Mat Sci Edit. 2019;34(4):761–768.
  • Robles Martinez P, Basit AW, Gaisford S. The history, developments and opportunities of stereolithography. In: AAPS advances in the pharmaceutical sciences series. New York: Springer Verlag; 2012. p. 55–79.
  • Wang Z, Abdulla R, Parker B, et al. A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks. Biofabrication. 2015;7(4):045009.
  • ASTM 52921. Standard terminology for additive manufacturing — coordinate systems and test methodologies. Geneva: ASTM Int; 2019.
  • Chan V, Zorlutuna P, Jeong JH, et al. Three-dimensional photopatterning of hydrogels using stereolithography for long-term cell encapsulation. Lab Chip. 2010;10(16):2062–2070.
  • Curti C, Kirby DJ, Russell CA. Stereolithography apparatus evolution: enhancing throughput and efficiency of pharmaceutical formulation development. Pharmaceutics. 2021;13(5):616.
  • Lim SH, Kathuria H, Bin AM, et al. High resolution photopolymer for 3D printing of personalised microneedle for transdermal delivery of anti-wrinkle small peptide. J Control Release. 2020;329:907–918.
  • Goyanes A, Buanz ABM, Hatton GB, et al. 3D printing of modified-release aminosalicylate (4-ASA and 5-ASA) tablets. Eur J Pharm Biopharm. 2015;89:157–162.
  • Konta A, García-Piña M, Serrano D. Personalised 3D printed medicines: which techniques and polymers are more successful? Bioengineering. 2017;4(4):79.
  • Melchels FPW, Feijen J, Grijpma DW. A review on stereolithography and its applications in biomedical engineering. Biomaterials. 2010;31(24):6121–6130.
  • Gardan J. Additive manufacturing technologies: state of the art and trends. Int J Prod Res. 2016;54(10):3118–3132.
  • Norman J, Madurawe RD, Moore CMV, et al. A new chapter in pharmaceutical manufacturing: 3D-printed drug products. Adv Drug Deliv Rev. 2017;108:39–50.
  • Trenfield SJ, Madla CM, Basit AW, et al. The shape of things to come: emerging applications of 3D printing in healthcare. In: AAPS advances in the pharmaceutical sciences series. New York: Springer Verlag; 2012. p. 1–19.
  • Osouli-Bostanabad K, Adibkia K. Made-on-demand, complex and personalized 3D-printed drug products. Bioimpacts. 2018;8(2):77–79.
  • Vitale A, Cabral J. Frontal conversion and uniformity in 3D printing by photopolymerisation. Materials. 2016;9(9):760.
  • Januskaite P, Xu X, Ranmal SR, et al. I spy with my little eye: a paediatric visual preferences survey of 3D printed tablets. Pharmaceutics. 2020;12(11):1100.
  • Rattanakit P, Moulton SE, Santiago KS, et al. Extrusion printed polymer structures: a facile and versatile approach to tailored drug delivery platforms. Int J Pharm. 2012;422(1–2):254–263.
  • Stereolithography-ODM | 3D systems. [cited 2021 Jan 8]. https://www.3dsystems.com/on-demand-manufacturing/stereolithography-sla.
  • Zhang X, Jiang X, Sun C. Micro-stereolithography of polymeric and ceramic microstructures. Sensors Actuators A Phys. 1999;77(2):149–156.
  • US4575330A – Apparatus for production of three-dimensional objects by stereolithography - Google Patents. [cited 2021 Jan 31]. https://patents.google.com/patent/US4575330A/en.
  • Salonitis K, Tsoukantas G, Stavropoulos P, et al. A critical review of stereolithography process modeling. In: Bártolo P, editor. Virtual modelling and rapid manufacturing – advanced research in virtual and rapid prototyping. London; New York: Taylor & Francis; 2003.
  • Madžarević M, Ibrić S. Evaluation of exposure time and visible light irradiation in LCD 3D printing of ibuprofen extended release tablets. Eur J Pharm Sci. 2021;158:105688.
  • Venuvinod PK, Ma W. Stereolithography (SL). In: Rapid prototyping. Boston (MA): Springer US; 2004. p. 195–244.
  • Heller C, Schwentenwein M, Russmueller G, et al. Vinyl esters: low cytotoxicity monomers for the fabrication of biocompatible 3D scaffolds by lithography based additive manufacturing. J Polym Sci A Polym Chem. 2009;47(24):6941–6954.
  • Patel DK, Sakhaei AH, Layani M, et al. Highly stretchable and UV curable elastomers for digital light processing based 3D printing. Adv Mater. 2017;29(15):1606000.
  • Noorani R. Materials for 3D printing. In: Noorani R, editor. 3D printing. Boca Raton (FL): CRC Press; 2017. p. 81–98.
  • Choi J-W, Kim H-C, Wicker R. Multi-material stereolithography. J Mater Process Technol. 2011;211(3):318–328.
  • Vehse M, Petersen S, Sternberg K, et al. Drug delivery from poly(ethylene glycol) diacrylate scaffolds produced by DLC based micro-stereolithography. Macromol Symp. 2014;346(1):43–47.
  • Hanson Shepherd JN, Parker ST, Shepherd RF, et al. 3D microperiodic hydrogel scaffolds for robust neuronal cultures. Adv Funct Mater. 2011;21(1):46–46.
  • Arcaute K, Mann BK, Wicker RB. Stereolithography of three-dimensional bioactive poly(ethylene glycol) constructs with encapsulated cells. Ann Biomed Eng. 2006;34(9):1429–1441.
  • Dhariwala B, Hunt E, Boland T. Rapid prototyping of tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography. Tissue Eng. 2004;10(9–10):1316–1322.
  • Fisher JP, Dean D, Mikos AG. Photocrosslinking characteristics and mechanical properties of diethyl fumarate/poly(propylene fumarate) biomaterials. Biomaterials. 2002;23(22):4333–4343.
  • Trachtenberg JE, Placone JK, Smith BT, et al. Extrusion-based 3D printing of poly(propylene fumarate) scaffolds with hydroxyapatite gradients. J Biomater Sci Polym Ed. 2017;28(6):532–554.
  • Tappa K, Jammalamadaka U. Novel biomaterials used in medical 3D printing techniques. JFB. 2018;9(1):17.
  • Arcaute K, Mann B, Wicker R. Stereolithography of spatially controlled multi-material bioactive poly(ethylene glycol) scaffolds. Acta Biomater. 2010;6(3):1047–1054.
  • Lee K-W, Wang S, Fox BC, et al. Poly(propylene fumarate) bone tissue engineering scaffold fabrication using stereolithography: effects of resin formulations and laser parameters. Biomacromolecules. 2007;8(4):1077–1084.
  • Choi J-W, Wicker R, Lee S-H, et al. Fabrication of 3D biocompatible/biodegradable micro-scaffolds using dynamic mask projection microstereolithography. J Mater Process Technol. 2009;209(15-16):5494–5503.
  • Jansen J, Melchels FPW, Grijpma DW, et al. Fumaric acid monoethyl ester-functionalized poly(D,L-lactide)/N-vinyl-2-pyrrolidone resins for the preparation of tissue engineering scaffolds by stereolithography. Biomacromolecules. 2009;10(2):214–220.
  • Skoog SA, Goering PL, Narayan RJ. Stereolithography in tissue engineering. J Mater Sci Mater Med. 2014;25(3):845–856.
  • Ronca A, Ambrosio L, Grijpma DW. Preparation of designed poly(d,l-lactide)/nanosized hydroxyapatite composite structures by stereolithography. Acta Biomater. 2013;9(4):5989–5996.
  • Stampfl J, Baudis S, Heller C, et al. Photopolymers with tunable mechanical properties processed by laser-based high-resolution stereolithography. J Micromech Microeng. 2008;18(12):125014.
  • Murphy EJ, Ansel RK. Method of forming a three-dimensional object by stereolithography and composition therefore. US07429568, US, 1989.
  • Esposito Corcione C, Greco A, Maffezzoli A. Photopolymerization kinetics of an epoxy-based resin for stereolithography. J Appl Polym Sci. 2004;92(6):3484–3491.
  • Lee TY, Carioscia J, Smith Z, et al. Thiol − allyl ether − methacrylate ternary systems. Evolution mechanism of Polymerization-Induced shrinkage stress and mechanical properties. Macromolecules. 2007;40(5):1473–1479.
  • Zhiwei G, Jianhua M, Shuhuai H, et al. Development of a hybrid photopolymer for stereolithography. J Wuhan Univ Technol-Mat Sci Edit. 2006;21(1):99–101.
  • Oesterreicher A, Wiener J, Roth M, et al. Tough and degradable photopolymers derived from alkyne monomers for 3D printing of biomedical materials. Polym Chem. 2016;7(32):5169–5180.
  • Bagheri A, Jin J. Photopolymerization in 3D printing. ACS Appl Polym Mater. 2019;1(4):593–611.
  • Badev A, Abouliatim Y, Chartier T, et al. Photopolymerization kinetics of a polyether acrylate in the presence of ceramic fillers used in stereolithography. J Photochem Photobiol A Chem. 2011;222(1):117–122.
  • Bail R, Patel A, Yang H, et al. The effect of a type I photoinitiator on cure kinetics and cell toxicity in Projection-Microstereolithography. Procedia CIRP. 2013;5:222–225.
  • Han L-H, Mapili G, Chen S, et al. Projection microfabrication of three-dimensional scaffolds for tissue engineering. J Manuf Sci Eng. 2008;130:021005.
  • Choi J, Wicker RB, Cho S, et al. Cure depth control for complex 3D microstructure fabrication in dynamic mask projection microstereolithography. Rapid Prototyp J. 2009;15(1):59–70.
  • Sun C, Fang N, Wu DM, et al. Projection micro-stereolithography using digital micro-mirror dynamic mask. Sensors Actuators A Phys. 2005;121(1):113–120.
  • Bail R, Hong JY, Chin BD. Effect of a red-shifted benzotriazole UV absorber on curing depth and kinetics in visible light initiated photopolymer resins for 3D printing. J Ind Eng Chem. 2016;38:141–145.
  • Bartolo PJ, Gaspar J. Metal filled resin for stereolithography metal part. CIRP Ann. 2008;57(1):235–238.
  • Halloran JW. Ceramic stereolithography: additive manufacturing for ceramics by photopolymerization. Annu Rev Mater Res. 2016;46(1):19–40.
  • Hinczewski C, Corbel S, Chartier T. Ceramic suspensions suitable for stereolithography. J Eur Ceram Soc. 1998;18(6):583–590.
  • Farahani RD, Dubé M, Therriault D. Three-dimensional printing of multifunctional nanocomposites: manufacturing techniques and applications. Adv Mater. 2016;28(28):5794–5821.
  • Lin D, Jin S, Zhang F, et al. 3D stereolithography printing of graphene oxide reinforced complex architectures. Nanotechnology. 2015;26(43):434003.
  • Credi C, Fiorese A, Tironi M, et al. 3D printing of cantilever-type microstructures by stereolithography of ferromagnetic photopolymers. ACS Appl Mater Interfaces. 2016;8(39):26332–26342.
  • De Hazan Y, Heinecke J, Weber A, et al. High solids loading ceramic colloidal dispersions in UV curable media via comb-polyelectrolyte surfactants. J Colloid Interface Sci. 2009;337(1):66–74.
  • Huang Y-M, Jiang C-P. On-line force monitoring of platform ascending rapid prototyping system. J Mater Process Technol. 2005;159(2):257–264.
  • Teng WD, Edirisinghe MJ, Evans JRG. Optimization of dispersion and viscosity of a ceramic jet printing ink. J Am Ceram Soc. 2005;80(2):486–494.
  • Li K, Zhao Z. The effect of the surfactants on the formulation of UV-curable SLA alumina suspension. Ceram Int. 2017;43(6):4761–4767.
  • Goswami A, K A, Balashanmugam N, et al. Optimization of rheological properties of photopolymerizable alumina suspensions for ceramic microstereolithography. Ceram Int. 2014;40(2):3655–3665.
  • Wang J, Goyanes A, Gaisford S, et al. Stereolithographic (SLA) 3D printing of oral modified-release dosage forms. Int J Pharm. 2016;503(1–2):207–212.
  • Goyanes A, Det-Amornrat U, Wang J, et al. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems. J Control Release. 2016;234:41–48.
  • Martinez PR, Goyanes A, Basit AW, et al. Fabrication of drug-loaded hydrogels with stereolithographic 3D printing. Int J Pharm. 2017;532(1):313–317.
  • Martinez PR, Goyanes A, Basit AW, et al. Influence of geometry on the drug release profiles of stereolithographic (SLA) 3D-Printed tablets. AAPS PharmSciTech. 2018;19(8):3355–3361.
  • Ulery BD, Nair LS, Laurencin CT. Biomedical applications of biodegradable polymers. J Polym Sci B Polym Phys. 2011;49(12):832–864.
  • Pan W, Wallin TJ, Odent J, et al. Optical stereolithography of antifouling zwitterionic hydrogels. J Mater Chem B. 2019;7(17):2855–2864.
  • Elomaa L, Pan C-C, Shanjani Y, et al. Three-dimensional fabrication of cell-laden biodegradable poly(ethylene glycol-co-depsipeptide) hydrogels by visible light stereolithography. J Mater Chem B. 2015;3(42):8348–8358.
  • Kim K, Yeatts A, Dean D, et al. Stereolithographic bone scaffold design parameters: osteogenic differentiation and signal expression. Tissue Eng Part B Rev. 2010;16(5):523–539.
  • Schüller-Ravoo S, Teixeira SM, Feijen J, et al. Flexible and elastic scaffolds for cartilage tissue engineering prepared by stereolithography using poly(trimethylene carbonate)-based resins. Macromol Biosci. 2013;13(12):1711–1719.
  • Lee JW, Kang KS, Lee SH, et al. Bone regeneration using a microstereolithography-produced customized poly(propylene fumarate)/diethyl fumarate photopolymer 3D scaffold incorporating BMP-2 loaded PLGA microspheres. Biomaterials. 2011;32(3):744–752.
  • Bajaj P, Marchwiany D, Duarte C, et al. Patterned three-dimensional encapsulation of embryonic stem cells using dielectrophoresis and stereolithography. Adv Healthc Mater. 2013;2(3):450–458.
  • Cui X, Breitenkamp K, Finn MG, et al. Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng Part A. 2012;18(11–12):1304–1312.
  • Elomaa L, Teixeira S, Hakala R, et al. Preparation of poly(ε-caprolactone)-based tissue engineering scaffolds by stereolithography. Acta Biomater. 2011;7(11):3850–3856.
  • Melchels FPW, Feijen J, Grijpma DW. A poly(d,l-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography. Biomaterials. 2009;30(23–24):3801–3809.
  • Seck TM, Melchels FPW, Feijen J, et al. Designed biodegradable hydrogel structures prepared by stereolithography using poly(ethylene glycol)/poly(D,L-lactide)-based resins. J Control Release. 2010;148(1):34–41.
  • Asikainen S, van Bochove B, Seppälä JV. Drug-releasing biopolymeric structures manufactured via stereolithography. Biomed Phys Eng Express. 2019;5(2):025008.
  • Robles-Martinez P, Xu X, Trenfield SJ, et al. 3D printing of a multi-layered polypill containing six drugs using a novel stereolithographic method. Pharmaceutics. 2019;11(6):274.
  • Thrasher CJ, Schwartz JJ, Boydston AJ. Modular elastomer photoresins for digital light processing additive manufacturing. ACS Appl Mater Interfaces. 2017;9(45):39708–39716.
  • Kuang X, Zhao Z, Chen K, et al. High-speed 3D printing of high-performance thermosetting polymers via two-stage curing. Macromol Rapid Commun. 2018;39(7):1700809.
  • Xu X, Awad A, Robles-Martinez P, et al. Vat photopolymerization 3D printing for advanced drug delivery and medical device applications. J Control Release. 2021;329:743–757.
  • Gu Y, Chen X, Lee J-H, et al. Inkjet printed antibiotic- and calcium-eluting bioresorbable nanocomposite micropatterns for orthopedic implants. Acta Biomater. 2012;8(1):424–431.
  • Liang K, Carmone S, Brambilla D, et al. 3D printing of a wearable personalized oral delivery device: a first-in-human study. Sci Adv. 2018;4(5):eaat2544.
  • Ozbolat IT, Yu Y. Bioprinting toward organ fabrication: challenges and future trends. IEEE Trans Biomed Eng. 2013;60(3):691–699.
  • Schubert C, Van Langeveld MC, Donoso LA. Innovations in 3D printing: a 3D overview from optics to organs. Br J Ophthalmol. 2014;98(2):159–161.
  • Krkobabić M, Medarević D, Pešić N, et al. Digital light processing (DLP) 3D printing of atomoxetine hydrochloride tablets using photoreactive suspensions. Pharmaceutics. 2020;12(9):833–817.
  • Tagami T, Morimura C, Ozeki T. Effective and simple prediction model of drug release from “ghost tablets” fabricated using a digital light projection-type 3D printer. Int J Pharm. 2021;604:120721.
  • Goyanes A, Madla CM, Umerji A, et al. Automated therapy preparation of isoleucine formulations using 3D printing for the treatment of MSUD: first single-centre, prospective, crossover study in patients. Int J Pharm. 2019;567:118497.
  • Lipson H. New world of 3-D printing offers "completely new ways of thinking": Q&A with author, engineer, and 3-D printing expert Hod Lipson. IEEE Pulse. 2013;4(6):12–14.
  • Krkobabić M, Medarević D, Cvijić S, et al. Hydrophilic excipients in digital light processing (DLP) printing of sustained release tablets: impact on internal structure and drug dissolution rate. Int J Pharm. 2019;572:118790.
  • Xu X, Robles-Martinez P, Madla CM, et al. Stereolithography (SLA) 3D printing of an antihypertensive polyprintlet: case study of an unexpected photopolymer-drug reaction. Addit Manuf. 2020;33:101071.
  • Pere CPP, Economidou SN, Lall G, et al. 3D printed microneedles for insulin skin delivery. Int J Pharm. 2018;544(2):425–432.
  • Ochoa M, Zhou J, Rahimi R, et al. Rapid 3D-print-and-shrink fabrication of biodegradable microneedles with complex geometries. 2015 Transducers – 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems, TRANSDUCERS. Anchorage, AK, 2015. p. 1251–1254.
  • Lu Y, Mantha SN, Crowder DC, et al. Microstereolithography and characterization of poly(propylene fumarate)-based drug-loaded microneedle arrays. Biofabrication. 2015;7(4):045001.
  • Miyazaki T, Hotta Y, Kunii J, et al. A review of dental CAD/CAM: current status and future perspectives from 20 years of experience. Dent Mater J. 2009;28(1):44–56.
  • Xu X, Goyanes A, Trenfield SJ, et al. Stereolithography (SLA) 3D printing of a bladder device for intravesical drug delivery. Mater Sci Eng C Mater Biol Appl. 2021;120:111773.
  • Vivero-Lopez M, Xu X, Muras A, et al. Anti-biofilm multi drug-loaded 3D printed hearing aids. Mater Sci Eng C Mater Biol Appl. 2021;119:111606.
  • Klein GT, Lu Y, Wang MY. 3D printing and neurosurgery-ready for prime time? World Neurosurg. 2013;80(3–4):233–235.
  • Sun J, Peng Z, Zhou W, et al. A review on 3D printing for customized food fabrication. Procedia Manuf. 2015;1:308–319.
  • Nathan GL. The future: creating novel foods using 3D printing. https://www.foodnavigator.com/Article/2010/12/23/Looking-to-the-future-Creating-novel-foods-using-3D-printing. 2012.
  • Michail N. Biozoon’s 3D printed smooth foods target Europe’s elderly, https://www.foodnavigator.com/Article/2016/09/26/Biozoon-s-3D-printed-smooth-foods-target-Europe-s-elderly. 2016.
  • Serizawa R, Shitara M, Gong J, et al. 3D jet printer of edible gels for food creation. In: Goulbourne NC, Naguib HE, editors. Behavior and mechanics of multifunctional materials and composites. Bellingham: SPIE; 2015. p. 90580A.
  • Gohd C. NASA astronauts can now 3D-print pizzas in space. https://futurism.com/nasa-astronauts-can-now-3d-print-pizzas-in-space. 2017.
  • Vithani K, Goyanes A, Jannin V, et al. An overview of 3D printing technologies for soft materials and potential opportunities for lipid-based drug delivery systems. Pharm Res. 2018;36(1):4.
  • Pandey M, Choudhury H, Fern JLC, et al. 3D printing for oral drug delivery: a new tool to customize drug delivery. Drug Deliv Transl Res. 2020;10(4):986–1001.
  • Ali A, Ahmad U, Akhtar J. 3D printing in pharmaceutical sector: an overview. In: Pharmaceutical formulation design – recent practices. London: IntechOpen; 2020.
  • Genina N, Fors D, Vakili H, et al. Tailoring controlled-release oral dosage forms by combining inkjet and flexographic printing techniques. Eur J Pharm Sci. 2012;47(3):615–623.
  • Skowyra J, Pietrzak K, Alhnan MA. Fabrication of extended-release patient-tailored prednisolone tablets via fused deposition modelling (FDM) 3D printing. Eur J Pharm Sci. 2015;68:11–17.
  • Melocchi A, Parietti F, Loreti G, et al. 3D printing by fused deposition modeling (FDM) of a swellable/erodible capsular device for oral pulsatile release of drugs. J Drug Deliv Sci Technol. 2015;30:360–367.
  • Katstra WE, Palazzolo RD, Rowe CW, et al. Oral dosage forms fabricated by three dimensional printing(TM). J Control Release. 2000;66(1):1–9.
  • Yu DG, Branford-White C, Yang YC, et al. A novel fast disintegrating tablet fabricated by three-dimensional printing. Drug Dev Ind Pharm. 2009;35(12):1530–1536.
  • Deng GY, Xiang LY, Wei DH, et al. Tablets with material gradients fabricated by three-dimensional printing. J Pharm Sci. 2007;96:2446–2456.
  • Yi H-G, Choi Y-J, Kang KS, et al. A 3D-printed local drug delivery patch for pancreatic cancer growth suppression. J Control Release. 2016;238:231–241.
  • Holländer J, Genina N, Jukarainen H, et al. Three-dimensional printed PCL-based implantable prototypes of medical devices for controlled drug delivery. J Pharm Sci. 2016;105(9):2665–2676.
  • Shim IK, Yi H-J, Yi H-G, et al. Locally-applied 5-fluorouracil-loaded slow-release patch prevents pancreatic cancer growth in an orthotopic mouse model. Oncotarget. 2017;8(25):40140–40151.
  • Shi X, Cheng Y, Wang J, et al. 3D printed intelligent scaffold prevents recurrence and distal metastasis of breast cancer. Theranostics. 2020;10(23):10652–10664.
  • Hafezi F, Scoutaris N, Douroumis D, et al. 3D printed chitosan dressing crosslinked with genipin for potential healing of chronic wounds. Int J Pharm. 2019;560:406–415.
  • Tagami T, Ito E, Hayashi N, et al. Application of 3D printing technology for generating hollow-type suppository shells. Int J Pharm. 2020;589:119825.
  • Seoane-Viaño I, Trenfield SJ, Basit AW, et al. Translating 3D printed pharmaceuticals: from hype to real-world clinical applications. Adv Drug Deliv Rev. 2021;174:553–575.
  • Tagami T, Ito E, Kida R, et al. 3D printing of gummy drug formulations composed of gelatin and an HPMC-based hydrogel for pediatric use. Int J Pharm. 2021;594:120118.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.