300
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Boron phenyl alanine targeted chitosan–PNIPAAm core–shell thermo-responsive nanoparticles: boosting drug delivery to glioblastoma in BNCT

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1607-1623 | Received 04 Apr 2021, Accepted 18 Jan 2022, Published online: 14 Feb 2022

References

  • Miyatake S-I, Kawabata S, Hiramatsu R, et al. Boron neutron capture therapy for malignant brain tumors. Neurol Med Chir. 2016;56(7):361–371.
  • Juratli TA, Schackert G, Krex D. Current status of local therapy in malignant gliomas—a clinical review of three selected approaches. Pharmacol Ther. 2013;139(3):341–358.
  • Thakur A, Gahane A, Bhadoriya SS, et al. Major hurdles for brain tumour therapy and the ways to overcome them: a review. J Pharm Res. 2011;4:1315.
  • Mahmoud BS, AlAmri AH, McConville C. Polymeric nanoparticles for the treatment of malignant gliomas. Cancers. 2020;12(1):175.
  • Bredel M. Anticancer drug resistance in primary human brain tumors. Brain Res Brain Res Rev. 2001;35(2):161–204.
  • Cerecetto H, Couto M. Medicinal chemistry of boron-bearing compounds for BNCT- Glioma treatment: current challenges and perspectives. In: Omerhodžić I, Arnautović K, editors. Glioma - Contemporary Diagnostic and Therapeutic Approaches [Internet]. London: IntechOpen; 2018 [cited 2022 Feb 01]. Available from: https://www.intechopen.com/chapters/61749 doi: https://doi.org/10.5772/intechopen.76369
  • Ferrari C, Bakeine J, Ballarini F, et al. In vitro and in vivo studies of boron neutron capture therapy: boron uptake/washout and cell death. Radiat Res. 2011;175(4):452–462.
  • Barth RF, Zhang Z, Liu T. A realistic appraisal of boron neutron capture therapy as a cancer treatment modality. Cancer Commun. 2018;38(1):36.
  • Kawasaki R, Sasaki Y, Akiyoshi K. Intracellular delivery and passive tumor targeting of a self-assembled nanogel containing carborane clusters for boron neutron capture therapy. Biochem Biophys Res Commun. 2017;483(1):147–152.
  • Luderer MJ, de la Puente P, Azab AK. Advancements in tumor targeting strategies for boron neutron capture therapy. Pharm Res. 2015;32(9):2824–2836.
  • Farias RO, Garabalino MA, Ferraris S, et al. Toward a clinical application of ex situ boron neutron capture therapy for lung tumors at the RA-3 reactor in Argentina. Med Phys. 2015;42(7):4161–4173.
  • Feng B, Tomizawa K, Michiue H, et al. Delivery of sodium borocaptate to glioma cells using immunoliposome conjugated with anti-EGFR antibodies by ZZ-His. Biomaterials. 2009;30(9):1746–1755.
  • Sherlock Huang LC, Hsieh WY, Chen JY, et al. Drug delivery system design and development for boron neutron capture therapy on cancer treatment. Appl Radiat Isot. 2014;88:89–93.
  • Barth RF, Coderre JA, Vicente MG, et al. Boron neutron capture therapy of cancer: current status and future prospects. Clin Cancer Res. 2005;11(11):3987–4002.
  • Ichikawa H, Taniguchi E, Fujimoto T, et al. Biodistribution of BPA and BSH after single, repeated and simultaneous administrations for neutron-capture therapy of cancer. Appl Radiat Isot. 2009;67(7–8 Suppl.):S111–S114.
  • Calabrese G, Daou A, Barbu E, et al. Towards carborane-functionalised structures for the treatment of brain cancer. Drug Discov Today. 2018;23(1):63–75.
  • Nedunchezhian K, Aswath N, Thiruppathy M, et al. Boron neutron capture therapy – a literature review. J Clin Diagn Res. 2016;10(12):ZE01–ZE04.
  • Barth RF, Mi P, Yang W. Boron delivery agents for neutron capture therapy of cancer. Cancer Commun. 2018;38(1):35.
  • Gao Z, Horiguchi Y, Nakai K, et al. Use of boron cluster-containing redox nanoparticles with ROS scavenging ability in boron neutron capture therapy to achieve high therapeutic efficiency and low adverse effects. Biomaterials. 2016;104:201–212.
  • Abolmaali SS, Tamaddon AM, Dinarvand R. A review of therapeutic challenges and achievements of methotrexate delivery systems for treatment of cancer and rheumatoid arthritis. Cancer Chemother Pharmacol. 2013;71(5):1115–1130.
  • Khan ZA, Tripathi R, Mishra B. Methotrexate: a detailed review on drug delivery and clinical aspects. Expert Opin Drug Deliv. 2012;9(2):151–169.
  • Hassan M, Farid D, Mahdi A, et al. Methotrexate-loaded PLGA nanoparticles: preparation, characterization and their cytotoxicity effect on human glioblastoma U87MG cells. Int J Med Nano Res. 2017;4(1).
  • De Jong WH, Borm PJ. Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine. 2008;3(2):133–149.
  • Fahmy TM, Fong PM, Goyal A, et al. Targeted for drug delivery. Mater Today. 2005;8(8):18–26.
  • Iqbal J, Anwar F, Afridi S. Targeted drug delivery systems and their therapeutic applications in cancer and immune pathological conditions. Infect Disord Drug Targets. 2017;17(3):149–159.
  • Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol. 2018;16(1):71.
  • Ye Z, Zhang T, He W, et al. Methotrexate-loaded extracellular vesicles functionalized with therapeutic and targeted peptides for the treatment of glioblastoma multiforme. ACS Appl Mater Interfaces. 2018;10(15):12341–12350.
  • Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12(11):991–1003.
  • Yang M, Hu J, Meng J, et al. A thermo and photoresponsive dual performing hydrogel for multiple controlled release mechanisms. Iran Polym J. 2020;29(10):891–900.
  • Hu S, Li H, Fang Q, et al. A core–shell double-layer structured polylactic acid/chitosan delivery system containing large molecular protein. Iran Polym J. 2020;29(11):997–1006.
  • Huang G, Mei X, Xiao F, et al. Applications of important polysaccharides in drug delivery. Curr Pharm Des. 2015;21(25):3692–3696.
  • Shelke NB, James R, Laurencin CT, et al. Polysaccharide biomaterials for drug delivery and regenerative engineering. Polym Adv Technol. 2014;25(5):448–460.
  • Esfahani RE, Zahedi P, Zarghami R. 5-Fluorouracil-loaded poly(vinyl alcohol)/chitosan blend nanofibers: morphology, drug release and cell culture studies. Iran Polym J. 2021;30(2):167–177.
  • Ruel-Gariépy E, Shive M, Bichara A, et al. A thermosensitive chitosan-based hydrogel for the local delivery of paclitaxel. Eur J Pharm Biopharm. 2004;57(1):53–63.
  • Rejinold NS, Sreerekha PR, Chennazhi KP, et al. Biocompatible, biodegradable and thermo-sensitive chitosan-g-poly (N-isopropylacrylamide) nanocarrier for curcumin drug delivery. Int J Biol Macromol. 2011;49(2):161–172.
  • Alvarez-Lorenzo C, Concheiro A, Dubovik AS, et al. Temperature-sensitive chitosan-poly(N-isopropylacrylamide) interpenetrated networks with enhanced loading capacity and controlled release properties. J Control Release. 2005;102(3):629–641.
  • Cho JH, Kim SH, Park KD, et al. Chondrogenic differentiation of human mesenchymal stem cells using a thermosensitive poly(N-isopropylacrylamide) and water-soluble chitosan copolymer. Biomaterials. 2004;25(26):5743–5751.
  • Wang J, Wu W, Jiang X. Nanoscaled boron-containing delivery systems and therapeutic agents for cancer treatment. Nanomedicine. 2015;10(7):1149–1163.
  • Freitag R, Fischer F. Microwave-induced chain transfer polymerization of a stimuli-responsive polymer and determination of its critical solution temperature. J Chem Educ. 2006;83(3):447.
  • Sun G, Feng C, Kong M, et al. Development of part-dissolvable chitosan fibers with surface N-succinylation for wound care dressing. Front Mater Sci. 2015;9(3):272–281.
  • Kustov LM, Finashina ED, Shuvalova EV, et al. Pd–Fe nanoparticles stabilized by chitosan derivatives for perchloroethene dechlorination. Environ Int. 2011;37(6):1044–1052.
  • Keller O, Keller WE, Look G, et al. Tert‐butoxycarbonylation of amino acids and their derivatives: N‐tert‐butoxycarbonyl‐l‐phenylalanine: l‐phenylalanine, N‐[(1,1‐dimethylethoxy) carbonyl]. Org Synth. 2003;63:160.
  • Zhang J, Zhou X, Zhou Z, et al. Preparation and characterization of l-phenylalanine modified chitosan resin for aromatic amino acid adsorption. Macromol Res. 2014;22(5):515–522.
  • Constantin M, Cristea M, Ascenzi P, et al. Lower critical solution temperature versus volume phase transition temperature in thermoresponsive drug delivery systems. Express Polym Lett. 2011;5(10):839–848.
  • Yoneoka S, Park KC, Nakagawa Y, et al. Synthesis and evaluation of thermoresponsive boron-containing poly(N-isopropylacrylamide) diblock copolymers for self-assembling nanomicellar boron carriers. Polymers. 2018;11(1):42.
  • Abreu CM, Paula HC, Seabra V, et al. Synthesis and characterization of non-toxic and thermo-sensitive poly(N-isopropylacrylamide)-grafted cashew gum nanoparticles as a potential epirubicin delivery matrix. Carbohydr Polym. 2016;154:77–85.
  • Elshaarawy RFM, Mustafa FHA, Herbst A, et al. Surface functionalization of chitosan isolated from shrimp shells, using salicylaldehyde ionic liquids in exploration for novel economic and ecofriendly antibiofoulants. RSC Adv. 2016;6(25):20901–20915.
  • Bao H, Li L, Leong WC, et al. Thermo-responsive association of chitosan-graft-poly(N-isopropylacrylamide) in aqueous solutions. J Phys Chem B. 2010;114(32):10666–10673.
  • Yang X, Zhang Q, Wang Y, et al. Self-aggregated nanoparticles from methoxy poly(ethylene glycol)-modified chitosan: synthesis; characterization; aggregation and methotrexate release in vitro. Colloids Surf B Biointerfaces. 2008;61(2):125–131.
  • Rahimi M, Kilaru S, Sleiman GE, et al. Synthesis and characterization of thermo-sensitive nanoparticles for drug delivery applications. J Biomed Nanotechnol. 2008;4(4):482–490.
  • Patil AS, Gadad AP. Development and evaluation of high oxaliplatin loaded CS-g-PNIPAAm co-polymeric nanoparticles for thermo and pH responsive delivery. Indian J Pharm Educ Res. 2018;52(1):62–70.
  • Mazzotta E, De Benedittis S, Qualtieri A, et al. Actively targeted and redox responsive delivery of anticancer drug by chitosan nanoparticles. Pharmaceutics. 2019;12(1):26.
  • Chen J, Huang L, Lai H, et al. Methotrexate-loaded PEGylated chitosan nanoparticles: synthesis, characterization, and in vitro and in vivo antitumoral activity. Mol Pharm. 2014;11(7):2213–2223.
  • Tromsdorf UI, Bruns OT, Salmen SC, et al. A highly effective, nontoxic T1 MR contrast agent based on ultrasmall PEGylated iron oxide nanoparticles. Nano Lett. 2009;9(12):4434–4440.
  • Huang C-H, Wang C-F, Don T-M, et al. Preparation of pH- and thermo-sensitive chitosan–PNIPAAm core–shell nanoparticles and evaluation as drug carriers. Cellulose. 2013;20(4):1791–1805.
  • Sethi S, Kaith BS, Kaur M, et al. Cross-linked xanthan gum-starch hydrogels as promising materials for controlled drug delivery. Cellulose. 2020;1–25.
  • Eleftheriou K, Kaminari A, Panagiotaki KN, et al. A combination drug delivery system employing thermosensitive liposomes for enhanced cell penetration and improved in vitro efficacy. Int J Pharm. 2020;574:118912.
  • Shah SA, Majeed A, Shafique M, et al. Cell viability study of thermo-responsive core–shell superparamagnetic nanoparticles for multimodal cancer therapy. Appl Nanosci. 2014;4(2):227–232.
  • van Meerloo J, Kaspers GJ, Cloos J. Cell sensitivity assays: the MTT assay. Methods Mol Biol. 2011;731:237–245.
  • Mogharbel BF, Francisco JC, Irioda AC, et al. Fluorescence properties of curcumin-loaded nanoparticles for cell tracking. Int J Nanomedicine. 2018;13:5823–5836.
  • Kasesaz Y, Khalafi H, Rahmani F, et al. Design and construction of a thermal neutron beam for BNCT at Tehran Research Reactor. Appl Radiat Isot. 2014;94:149–151.
  • Ferreira TH, Miranda MC, Rocha Z, et al. An assessment of the potential use of BNNTs for boron neutron capture therapy. Nanomaterials. 2017;7(4):82.
  • Bashir S, Teo YY, Ramesh S, et al. N-succinyl chitosan preparation, characterization, properties and biomedical applications: a state of the art review. Rev Chem Eng. 2015;31(6).
  • Kumar MN, Muzzarelli RA, Muzzarelli C, et al. Chitosan chemistry and pharmaceutical perspectives. Chem Rev. 2004;104(12):6017–6084.
  • Park JH, Saravanakumar G, Kim K, et al. Targeted delivery of low molecular drugs using chitosan and its derivatives. Adv Drug Deliv Rev. 2010;62(1):28–41.
  • Kong X, Xu W, Zhang C, et al. Chitosan temperature-sensitive gel loaded with drug microspheres has excellent effectiveness, biocompatibility and safety as an ophthalmic drug delivery system. Exp Ther Med. 2018;15(2):1442–1448.
  • Chuang C-Y, Don T-M, Chiu W-Y. Synthesis and characterization of stimuli-responsive porous/hollow nanoparticles by self-assembly of chitosan-based graft copolymers and application in drug release. J Polym Sci A Polym Chem. 2010;48(11):2377–2387.
  • Krishnaiah D, Anisuzzaman SM, Shi SF, et al. Effect of 3-mercaptopropionic acid on polymerization of thermo-responsive poly(N-isopropylacrylamide). In: Pogaku R., Bono A., Chu C, editors. Developments in Sustainable Chemical and Bioprocess Technology. Boston, MA: Springer. https://doi.org/https://doi.org/10.1007/978-1-4614-6208-8_43 2013. p. 365–70.
  • Lee SB, Ha DI, Cho SK, et al. Temperature/pH-sensitive comb-type graft hydrogels composed of chitosan and poly(N-isopropylacrylamide). J Appl Polym Sci. 2004;92(4):2612–2620.
  • Valeur E, Bradley M. Amide bond formation: beyond the myth of coupling reagents. Chem Soc Rev. 2009;38(2):606–631.
  • Reading M, Luget A, Wilson R. Modulated differential scanning calorimetry. Thermochim Acta. 1994;238:295–307.
  • Jaiswal MK, Banerjee R, Pradhan P, et al. Thermal behavior of magnetically modalized poly(N-isopropylacrylamide)-chitosan based nanohydrogel. Colloids Surf B Biointerfaces. 2010;81(1):185–194.
  • Baghaei S, Khorasani MT. Preparation and characterization of a thermal responsive of poly(N-isopropylacrylamide)/chitosan/gelatin hydrogels. Biomater Biomed Eng. 2014;1(2):105–116.
  • Sosnik A, Imperiale JC, Vazquez-Gonzalez B, et al. Mucoadhesive thermo-responsive chitosan-g-poly(N-isopropylacrylamide) polymeric micelles via a one-pot gamma-radiation-assisted pathway. Colloids Surf B Biointerfaces. 2015;136:900–907.
  • Tauer K, Gau D, Schulze S, et al. Thermal property changes of poly(N-isopropylacrylamide) microgel particles and block copolymers. Colloid Polym Sci. 2009;287(3):299–312.
  • Yu Y, Chang X, Ning H, et al. Synthesis and characterization of thermoresponsive hydrogels cross-linked with chitosan. Open Chemistry. 2008;6(1):107–113.
  • Zhu M, Nie G, Meng H, et al. Physicochemical properties determine nanomaterial cellular uptake, transport, and fate. Acc Chem Res. 2013;46(3):622–631.
  • Akinc A, Battaglia G. Exploiting endocytosis for nanomedicines. Cold Spring Harb Perspect Biol. 2013;5(11):a016980.
  • Ekinci M, Ilem-Ozdemir D, Gundogdu E, et al. Methotrexate loaded chitosan nanoparticles: preparation, radiolabeling and in vitro evaluation for breast cancer diagnosis. J Drug Deliv Sci Technol. 2015;30:107–113.
  • Bordat A, Boissenot T, Nicolas J, et al. Thermoresponsive polymer nanocarriers for biomedical applications. Adv Drug Deliv Rev. 2019;138:167–192.
  • Lazzari G, Couvreur P, Mura S. Multicellular tumor spheroids: a relevant 3D model for the in vitro preclinical investigation of polymer nanomedicines. Polym Chem. 2017;8(34):4947–4969.
  • Smilgys B, Guedes S, Morales M, et al. Boron thin films and CR-39 detectors in BNCT: a method to measure the 10B (n, α) 7Li reaction rate. Radiat Meas. 2013;50:181–186.
  • Pawar VM, Beck M, Shetgaonkar AD, et al. Synthesis and application of boron polymers for enhanced thermal neutron dosimetry. Nucl Instrum Methods Phys Res Sect B. 2020;462:169–176.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.