328
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Polymeric implants with drug-releasing capabilities: a mapping review of laboratory research

, , ORCID Icon, , , & show all
Pages 1535-1545 | Received 20 Oct 2021, Accepted 07 Feb 2022, Published online: 27 Feb 2022

References

  • Chien YW, Rozek LF, Lambert HJ. Microsealed drug delivery systems I: in vitro-in vivo correlation on subcutaneous release of desoxycorticosterone acetate and prolonged hypertensive animal model for cardiovascular studies. J Pharm Sci. 1978;67(2):214–217.
  • Abbasnezhad N, Shirinbayan M, Tcharkhtchi A, et al. In vitro study of drug release from various loaded polyurethane samples and subjected to different non-pulsed flow rates. J Drug Delivery Sci Technol. 2020;55:101500.
  • Yang YK, Qiao XY, Huang RY, et al. E-jet 3D printed drug delivery implants to inhibit growth and metastasis of orthotopic breast cancer. Biomaterials. 2020;230:119618.
  • Huh BK, Kim BH, Kim CR, et al. Elastic net of polyurethane strands for sustained delivery of triamcinolone around silicone implants of various sizes. Mater Sci Eng C. 2020;109:110565.
  • Cunningham NF, Saba N, Millar PG. Release of progesterone from silicone rubber implants in vitro, and the effects of the implants on plasma progesterone levels in sheep. J Reprod Fertil. 1975;43(3):555–558.
  • Genina N, Hollander J, Jukarainen H, et al. Ethylene vinyl acetate (EVA) as a new drug carrier for 3D printed medical drug delivery devices. Eur J Pharm Sci. 2016;90:53–63.
  • Stewart SA, Domínguez-Robles J, Donnelly RF, et al. Implantable polymeric drug delivery devices: classification, manufacture, materials, and clinical applications. Polymers. 2018;10(12):1379.
  • Schwope AD, Wise DL, Howes JF. Lactic/glycolic acid polymers as narcotic antagonist delivery systems. Life Sci. 1975;17(12):1877–1886.
  • Yang MB, Tamargo RJ, Brem H. Controlled delivery of 1,3-bis(2-chloroethyl)-1-nitrosourea from ethylene-vinyl acetate copolymer. Cancer Res. 1989;49(18):5103–5107.
  • Smith AL, Cordery PM, Thompson ID. Manufacture and release characteristics of elvax polymers containing glutamate receptor antagonists. J Neurosci Methods. 1995;60(1–2):211–217.
  • Maeda M, Moriuchi S, Sano A, et al. New drug delivery system for water-soluble drugs using silicone and its usefulness for local treatment: application of GCV-silicone to GCV/HSV-tk gene therapy for brain tumor. J Control Release. 2002;84(1–2):15–25.
  • Ozalp Y, Ozdemir N, Hasirci V. Vancomycin release from poly(D,L-lactide) and poly(lactide-co-glycolide) disks. J Microencapsulation. 2002;19(1):83–94.
  • Lee JS, An TK, Chae GS, et al. Evaluation of in vitro and in vivo antitumor activity of BCNU-loaded PLGA wafer against 9L gliosarcoma. Eur J Pharm Biopharm. 2005;59(1):169–175.
  • Lee JS, Chae GS, An TK, et al. Preparation of 5-fluorouracil-loaded poly(L-lactide-co-glycolide) wafer and evaluation of in vitro release behavior. Macromol Res. 2003;11(3):183–188.
  • Manome Y, Kobayashi T, Mori M, et al. Local delivery of doxorubicin for malignant glioma by a biodegradable PLGA polymer sheet. Anticancer Res. 2006;26(5A):3317–3326.
  • Ong BY, Ranganath SH, Lee LY, et al. Paclitaxel delivery from PLGA foams for controlled release in post-surgical chemotherapy against glioblastoma multiforme. Biomaterials. 2009;30(18):3189–3196.
  • Ouyang L, Sun Z, Wang D, et al. Smart release of doxorubicin loaded on polyetheretherketone (PEEK) surface with 3D porous structure. Colloids Surf B Biointerfaces. 2018;163:175–183.
  • Snorradottir BS, Jonsdottir F, Sigurdsson ST, et al. Numerical modelling and experimental investigation of drug release from layered silicone matrix systems. Eur J Pharm Sci. 2013;49(4):671–678.
  • Snorradottir BS, Gudnason PI, Scheving R, et al. Release of anti-inflammatory drugs from a silicone elastomer matrix system. Pharmazie. 2009;64(1):19–25.
  • Cardea S, Baldino L, Scognamiglio M, et al. 3D PLLA/ibuprofen composite scaffolds obtained by a supercritical fluids assisted process. J Mater Sci Mater Med. 2014;25(4):989–998.
  • Salmoria GV, Sibilia F, Henschel VG, et al. Structure and properties of polycaprolactone/ibuprofen rods prepared by melt extrusion for implantable drug delivery. Polym Bull. 2017;74(12):4973–4987.
  • Vieira ES, Salmoria GV, de Mello Gindri I, et al. Preparation of ibuprofen-loaded HDPE tubular devices for application as urinary catheters. J Appl Polym Sci. 2018;135(2):45661.
  • Siegel SJ, Winey KI, Gur RE, et al. Surgically implantable long-term antipsychotic delivery systems for the treatment of schizophrenia. Neuropsychopharmacology. 2002;26(6):817–823.
  • Metzger KL, Shoemaker JM, Kahn JB, et al. Pharmacokinetic and behavioral characterization of a long-term antipsychotic delivery system in rodents and rabbits. Psychopharmacology. 2007;190(2):201–211.
  • Rabin C, Liang Y, Ehrlichman RS, et al. In vitro and in vivo demonstration of risperidone implants in mice. Schizophr Res. 2008;98(1–3):66–78.
  • Amann LC, Gandal MJ, Lin R, et al. In vitro-in vivo correlations of scalable PLGA-risperidone implants for the treatment of schizophrenia. Pharm Res. 2010;27(8):1730–1737.
  • Wang CK, Wang WY, Meyer RF, et al. A rapid method for creating drug implants: translating laboratory-based methods into a scalable manufacturing process. J Biomed Mater Res Part B. 2010;93(2):562–572.
  • Navitha A, Jogala S, Krishnamohan C, et al. Development of novel risperidone implants using blends of polycaprolactones and in vitro in vivo correlation studies. J Adv Pharm Technol Res. 2014;5(2):84–89.
  • Saadat E, Abdollahi A, Dorkoosh FA. Fabrication and characterization of risperidone implants as an extended antipsychotic delivery system, exploring the role of excipients. J Pharm Innov. 2015;10(2):118–129.
  • Ravi GS, Geena V, Joshi J, et al. Design and characterization of aloe emodin dental implants for the treatment of dental caries. Int J Pharm Sci Rev Res. 2018;51(1):12–18.
  • Nieto K, Pei P, Wang D, et al. In vivo controlled release of fenretinide from long-acting release depots for chemoprevention of oral squamous cell carcinoma recurrence. Int J Pharm. 2018;538(1–2):48–56.
  • Deepa K, Jaisankar V. Synthesis and characterisation of antihyperglycemic drug delivery applications of certain xylitol based copolyester. Trends Biomater Artif Organs. 2018;32(3):105–110.
  • Zlomke C, Barth M, Mäder K. Polymer degradation induced drug precipitation in PLGA implants - Why less is sometimes more. Eur J Pharm Biopharm. 2019;139:142–152.
  • Yasukawa T, Kimura H, Kunou N, et al. Biodegradable scleral implant for intravitreal controlled release of ganciclovir. Graefes Arch Clin Exp Ophthalmol. 2000;238(2):186–190.
  • Williams JA, Yuan X, Dillehay LE, et al. Synthetic, implantable polymers for local delivery of IUdR to experimental human malignant glioma. Int J Radiat Oncol Biol Phys. 1998;42(3):631–639.
  • Pereira BC, Isreb A, Forbes RT, et al. ‘Temporary plasticiser’: a novel solution to fabricate 3D printed patient-centred cardiovascular ‘Polypill’ architectures. Eur J Pharm Biopharm. 2019;135:94–103.
  • Sadia M, Arafat B, Ahmed W, et al. Channelled tablets: an innovative approach to accelerating drug release from 3D printed tablets. J Control Release. 2018;269:355–363.
  • Korte C, Quodbach J. 3D-Printed network structures as Controlled-Release drug delivery systems: dose adjustment, API release analysis and prediction. AAPS PharmSciTech. 2018;19(8):3333–3342.
  • Cui W, Li X, Zhu X, et al. Investigation of drug release and matrix degradation of electrospun poly(DL-lactide) fibers with paracetanol inoculation. Biomacromolecules. 2006;7(5):1623–1629.
  • Pouponneau P, Perrey O, Brunon C, et al. Electrospun bioresorbable membrane eluting chlorhexidine for dental implants. Polymers. 2020;12(1):66.
  • Eren Boncu T, Uskudar Guclu A, Catma MF, et al. In vitro and in vivo evaluation of linezolid loaded electrospun PLGA and PLGA/PCL fiber mats for prophylaxis and treatment of MRSA induced prosthetic infections. Int J Pharm. 2020;573:118758.
  • Bil M, Kijeńska-Gawrońska E, Głodkowska-Mrówka E, et al. Design and in vitro evaluation of electrospun shape memory polyurethanes for self-fitting tissue engineering grafts and drug delivery systems. Mater Sci Eng C. 2020;110:110675.
  • Hanafy AF, Ali HSM, El Achy SN, et al. Dual effect biodegradable ciprofloxacin loaded implantable matrices for osteomyelitis: controlled release and osteointegration. Drug Dev Ind Pharm. 2018;44(6):1023–1033.
  • Sircoglou J, Gehrke M, Tardivel M, et al. Trans-Oval-Window implants, a new approach for drug delivery to the inner ear: extended dexamethasone release from silicone-based implants. Otol Neurotol. 2015;36(9):1572–1579.
  • Li LC, Deng J, Stephens D. Polyanhydride implant for antibiotic delivery–from the bench to the clinic. Adv Drug Deliv Rev. 2002;54(7):963–986.
  • Weidenauer U, Bodmer D, Kissel T. Microencapsulation of hydrophilic drug substances using biodegradable polyesters. Part II: implants allowing controlled drug release–a feasibility study using bisphosphonates. J Microencapsul. 2004;21(2):137–149.
  • Rai B, Teoh SH, Hutmacher DW, et al. Novel PCL-based honeycomb scaffolds as drug delivery systems for rhBMP-2. Biomaterials. 2005;26(17):3739–3748.
  • Costa PF, Puga AM, Diaz-Gomez L, et al. Additive manufacturing of scaffolds with dexamethasone controlled release for enhanced bone regeneration. Int J Pharm. 2015;496(2):541–550.
  • Hollander J, Genina N, Jukarainen H, et al. Three-Dimensional printed PCL-based implantable prototypes of medical devices for controlled drug delivery. J Pharm Sci. 2016;105(9):2665–2676.
  • Yi HG, Choi YJ, Kang KS, et al. A 3D-printed local drug delivery patch for pancreatic cancer growth suppression. J Control Release. 2016;238:231–241.
  • Tappa K, Jammalamadaka U, Ballard DH, et al. Medication eluting devices for the field of OBGYN (MEDOBGYN): 3D printed biodegradable hormone eluting constructs, a proof of concept study. PLoS One. 2017;12(8):e0182929.
  • Wu P, Hu S, Liang Q, et al. A polymer scaffold with drug-sustained release and antibacterial activity. Int J Polymer Mater Polymer Biomater. 2020;69(6):398–405.
  • Lin S, Chao PY, Chien YW, et al. In vitro and in vivo evaluations of biodegradable implants for hormone replacement therapy: effect of system design and PK-PD relationship. AAPS PharmSciTech. 2001;2(3):55–65.
  • Salmoria GV, Vieira FE, Muenz EA, et al. Additive manufacturing of PE/fluorouracil/progesterone intrauterine device for endometrial and ovarian cancer treatments. Polym Test. 2018;71:312–317.
  • Siepmann J, Siepmann F. Modeling of diffusion controlled drug delivery. J Control Release. 2012;161(2):351–362.
  • Ma P, Gou S, Ma Y, et al. Modulation of drug release by decoration with pluronic F127 to improve anti-Colon cancer activity of electrospun fibrous meshes. Mater Sci Eng C Mater Biol Appl. 2019;99:591–598.
  • Salmoria GV, Ghizoni GB, Gindri IM, et al. Hot extrusion of PE/fluorouracil implantable rods for targeted drug delivery in cancer treatment. Polym Bull. 2019;76(4):1825–1838.
  • Yang Y, Tang G, Zhang H, et al. Controllable dual-release of dexamethasone and bovine serum albumin from PLGA/beta-tricalcium phosphate composite scaffolds. J Biomed Mater Res Part B. 2011;96(1):139–151.
  • Kuang X, Chen V, Xu X. Novel approaches to the control of oral microbial biofilms. Biomed Res Int. 2018;2018:6498932–6498932.
  • Ramadan DE, Hariyani N, Indrawati R, et al. Cytokines and chemokines in periodontitis. Eur J Dent. 2020;14(3):483–495.
  • Barat R, Srinatha A, Pandit J, et al. Chitosan inserts for periodontitis: influence of drug loading, plasticizer and crosslinking on in vitro metronidazole release. Acta Pharm. 2007;57(4):469–477.
  • Brito Raj S, Harsha Vardhan Kumar G, Wasim Raja S, et al. Design, characterization and in vitro evaluation of dental implants of aceclofenac sodium for periodontitis. Int J Pharm Pharm Sci. 2012;4(2):142–144.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.